ON THE SPECTRUM OF RINGS OF FUNCTIONS

SOPHIE FRISCH

Abstract. For D a domain and $E \subseteq D$, we investigate the prime spectrum of rings of functions from E to D, that is, of rings contained in $\prod_{e \in E} D$ and containing D. Among other things, we characterize, when M is a maximal ideal of finite index in D, those prime ideals lying above M which contain the kernel of the canonical map to $\prod_{e \in E} (D/M)$ as being precisely the prime ideals corresponding to ultrafilters on E. We give a sufficient condition for when all primes above M are of this form and thus establish a correspondence to the prime spectra of ultraproduc ts of residue class rings of D. As a corollary, we obtain a description using ultrafilters, differing from Chabert’s original one which uses elements of the M-adic completion, of the prime ideals in the ring of integer-valued polynomials $\text{Int}(D)$ lying above a maximal ideal of finite index.

1. Introduction

Let D be an integral domain, $E \subseteq D$, and R a subring of $\prod_{e \in E} D$, containing D. The elements of R can be interpreted as functions from E to D and, consequently, we call R a ring of functions from E to D. We will investigate the prime spectra of such rings of functions. We obtain, for quite general R, a partial description of the prime spectrum, cf. Theorems 3.7 and 5.3, and in special cases a complete characterization, cf. Corollary 6.5.

Our motivation is the spectrum of a ring of integer-valued polynomials: For D an integral domain with quotient field K, let $\text{Int}(D) = \{ f \in K[x] \mid f(D) \subseteq D \}$ be the ring of integer-valued polynomials on D. More generally, when K is understood, we let $\text{Int}(A, B) = \{ f \in K[x] \mid f(A) \subseteq B \}$ for $A, B \subseteq K$.

If D is a Noetherian one-dimensional domain, a celebrated theorem of Chabert [1, Ch. V] states that every prime ideal of $\text{Int}(D)$ lying over a maximal ideal M of finite index in D is maximal and of the form

$$M_\alpha = \{ f \in \text{Int}(D) \mid f(\alpha) \in \hat{M} \},$$

where α is an element of the M-adic completion \hat{D}_M of D and \hat{M} the maximal ideal of \hat{D}_M.

2010 Mathematics Subject Classification. Primary 13F20; Secondary 13L05, 13B25, 13A15, 13G05, 12L10.

Key words and phrases. ultrafilter, integer-valued polynomials, rings of functions, polynomial functions, maximal ideals, prime spectrum, commutative rings, integral domains, products, ultraproducts.

This research was supported by the Austrian Science Fund FWF grant P27816-N26.
In fact, Chabert showed two separate statements independently – both under the assumption that D is Noetherian and one-dimensional and M a maximal ideal of finite index of D:

1. Every maximal ideal of $\text{Int}(D)$ containing $\text{Int}(D, M)$ is of the form M_α for some $\alpha \in \hat{D}_M$.
2. Every maximal ideal of $\text{Int}(D)$ lying over M contains $\text{Int}(D, M)$.

For a simplified proof of Chabert’s result, see [4], Lemma 4.4 and the remark following it.

We will show that a modified version of statement (1) holds in far greater generality, for rings of functions. The modification consists in replacing elements of the M-adic completion by ultrafilters.

Whether (2) holds or not for a particular D and a particular subring of D^E will have to be examined separately. It is, in some sense, a question of density of the subring in the product $\prod_{e \in E} D$.

We will work in the following setting:

Definition 1.1. Let D be a commutative ring and $E \subseteq D$. Let R be a commutative ring and $\varphi : R \to \prod_{e \in E} D$ a monomorphism of rings. φ allows us to interpret the elements of R as functions from E to D.

If all constant functions are contained in $\varphi(R)$, we call the pair (R, φ) a ring of functions from E to D. We use $R = \mathcal{R}(E, D)$ (where φ is understood) to denote a ring of functions from E to D.

Remark 1.2. For our considerations it is vital that $\mathcal{R} = \mathcal{R}(E, D)$ contain all constant functions, because we will make extensive use of the following fact: when I is an ideal of $\mathcal{R} = \mathcal{R}(E, D)$, $f \in I$ and $g \in D[x]$ a polynomial with zero constant term, then $g(f) \in I$, and similarly, if g is a polynomial in several variables over D with zero constant term, and an element of I is substituted for each variable in g, then, an element of I results.

Let us note that considerable research has been done on the spectrum of a power of a ring $D^E = \prod_{d \in E} D$ or a product of rings $\prod_{e \in E} D_e$. Gilmer and Heinzer [5, Prop. 2.3] have determined the spectrum of an infinite product of local rings, and Levy, Loustauau and Shapiro [8] that of an infinite power of \mathbb{Z}. Our focus here is not on the full product of rings, but on comparatively small subrings and the question of how much information about the spectrum of a ring can be obtained from its embedding in a power of a domain.

One ring can be embedded in different products: $\text{Int}(D)$ can be seen as a ring of functions from K to K as well as a ring of functions from D to D. We will glean a lot more information about the spectrum of $\text{Int}(D)$ from the second interpretation than from the first.
2. Prime ideals corresponding to ultrafilters

Let $R = R(E, D)$ be a ring of functions from E to D as in Definition 1.1. We will now make precise the concept of ideals corresponding to ultrafilters, and the connection to ultraproducts $\prod_{e \in E}^U (D/M)$, where M is a maximal ideal of D, and U an ultrafilter on E. First a quick review of filters, ultrafilters and ultraproducts:

Definition 2.1. Let S be a set. A non-empty collection F of subsets of S is called a filter on S if

1. $\emptyset \notin F$.
2. $A, B \in F$ implies $A \cap B \in F$.
3. $A \subseteq C \subseteq S$ with $A \in F$ implies $C \in F$.

A filter F on S is called an ultrafilter on S if, for every $C \subseteq S$, either $C \in F$ or $S \setminus C \in F$.

Remark 2.2. Clearly, a necessary and sufficient condition for $C \subseteq \mathcal{P}(S)$ to be contained in a filter on S is that C satisfies the finite intersection property. If the finite intersection property is satisfied, then the supersets of finite intersections of members of C form a filter.

Although, strictly speaking, we do not need ultraproducts to prove our results, we will nevertheless introduce them, because they provide context, in particular to Lemma 2.6, and to sections 3 and 5.

Definition 2.3. Let S be an index set and U an ultrafilter on S. Suppose we are given, for each $s \in S$, a ring R_s. Then the ultraproduct of rings $\prod_{s \in S}^U R_s$ is defined as the direct product $\prod_{s \in S} R_s$ modulo the congruence relation

$$(r_s)_{s \in S} \sim (t_s)_{s \in S} \iff \{s \in S \mid r_s = t_s\} \in U.$$

Ultraproducts of other algebraic structures are defined analogously. The usefulness of ultraproducts is captured by the Theorem of L"os (cf. [6, Chpt. 3.2] or [7, Prop 1.6.14]) which states that an ultraproduct $\prod_{s \in S}^U R_s$ satisfies a first-order formula if and only if the set of indices s for which R_s satisfies the formula is in U. Here first-order formula means a formula in the first-order language whose only non-logical symbols (apart from the equality sign) are symbols for the algebraic operations; for instance, $+$ and \cdot in the case of an ultraproduct of rings.

Definition 2.4. Let D be a domain, $E \subseteq D$, $R = R(E, D)$ a ring of functions, I an ideal of D and \mathcal{F} a filter on E.

For $f \in R(E, D)$, we let $f^{-1}(I) = \{e \in E \mid f(e) \in I\}$ and define

$I_\mathcal{F} = \{f \in R(E, D) \mid f^{-1}(I) \in \mathcal{F}\}$
Remark 2.5. Let everything as in Definition 2.4, I, J ideals of D and F, G filters on E. Some easy consequences of Definition 2.4 are:

(1) If $I \neq D$ then $IF \neq R$.
(2) IF is an ideal of R containing $R(E, I) = \{ f \in R \mid f(E) \subseteq I \}$.
(3) $I \subseteq J \implies IF \subseteq JF$.
(4) $F \subseteq G \implies IF \subseteq IG$.

Lemma 2.6. Let D be a domain, $E \subseteq D$, and $\mathcal{R} = \mathcal{R}(E, D)$ a ring of functions from E to D.

Then for every prime ideal P of D and every ultrafilter \mathcal{U} on E, $P\mathcal{U}$ is a prime ideal of \mathcal{R}.

Proof. Easy direct verification: let $fg \in P\mathcal{U}$; because P is a prime ideal of D, the inverse image of P under $f \cdot g$ is the union of $f^{-1}(P)$ and $g^{-1}(P)$. If the union of two sets is in an ultrafilter, then one of them must be in the ultrafilter. Therefore, $f \in P\mathcal{U}$ or $g \in P\mathcal{U}$. Also, $P\mathcal{U}$ cannot be all of \mathcal{R} because it doesn’t contain the constant function 1. \qed

One way of looking at $P\mathcal{U}$ is by considering the following commuting diagram of ring-homomorphisms, where π and π_1 mean applying the canonical projection in each factor of the product, and σ and σ_1 mean factoring through the defining congruence relation of an ultraproduct.

\[
\begin{array}{cccc}
\mathcal{R} & \xrightarrow{\varphi} & \prod_{e \in E} D & \xrightarrow{\sigma_1} \prod_{e \in E}^\mathcal{U} D \\
\downarrow{\pi} & & \downarrow{\pi_1} & \\
\prod_{e \in E} (D/P) & \xrightarrow{\sigma} & \prod_{e \in E}^\mathcal{U} (D/P)
\end{array}
\]

$P\mathcal{U}$ is the kernel of the following composition of ring homomorphisms:

$\varphi : \mathcal{R} \rightarrow \prod_{e \in E} D$

followed by the canonical projection

$\pi : \prod_{e \in E} D \rightarrow \prod_{e \in E} (D/P)$

and the canonical projection

$\sigma : \prod_{e \in E} (D/P) \rightarrow \prod_{e \in E}^\mathcal{U} (D/P)$

Since D/P is an integral domain, any ultraproduct of copies of D/P is also an integral domain, by the Theorem of Loś. Therefore (0) is a prime ideal of $\prod_{e \in E}^\mathcal{U} (D/P)$ and hence $P\mathcal{U}$ a prime ideal of \mathcal{R}. We also see that $P\mathcal{U}$ is the inverse
image of a prime ideal of $\prod_{e \in E} D$ under φ, and further, of a prime ideal of the ultraprodut $\prod_{e \in E} D$ under $\sigma_1 \circ \varphi$.

3. THE SET OF ZERO-LOCI MOD M OF AN IDEAL OF THE RING OF FUNCTIONS

As before, D is a domain with quotient field K, $E \subseteq D$ and $R = R(E, D)$ a ring of functions from E to D as in Def. 1.1. Especially, recall from Def. 1.1 that R is assumed to contain all constant functions.

Definition 3.1. For $M \subseteq D$ and $f \in R = R(E, D)$, let

$$f^{-1}(M) = \{ e \in E \mid f(e) \in M \}.$$

For an ideal M of D and an ideal I of R, let

$$Z_M(I) = \{ f^{-1}(M) \mid f \in I \}.$$

Recall from Def. 2.4 that for a filter F on E,

$$M_F = \{ f \in R(E, D) \mid f^{-1}(M) \in F \}.$$

Remark 3.2. Note that the above definition implies

1. $I \subseteq J \implies Z_M(I) \subseteq Z_M(J)$
2. $I \subseteq M_F \iff Z_M(I) \subseteq F$

Lemma 3.3. Let M be an ideal of D and I an ideal of R. The following are equivalent:

(a) There exists a filter F on E such that $I \subseteq M_F$.
(b) $Z_M(I)$ satisfies the finite intersection property.

Proof. If $I \subseteq M_F$, then $Z_M(I)$ is contained in F and hence satisfies the finite intersection property. Conversely, if $Z_M(I)$ satisfies the finite intersection property then, by Remark 2.2, the supersets of finite intersections of sets in $Z_M(I)$ form a filter F on E for which $Z_M(I) \subseteq F$ and hence $I \subseteq M_F$. \Box

In the case where $R(E, D) = \prod_{e \in E} D$ is the ring of all functions from E to D, much more can be said; see the papers by Gilmer and Heinzer [5, Prop. 2.3] (concerning local rings) and Levy, Loustaunau and Shapiro [8] (concerning $D = \mathbb{Z}$).

For a field K that is not algebraically closed, we will need, for an arbitrary $n \geq 2$, an n-ary form that has no zero but the trivial one. For this purpose, recall how to define a norm form: if $L : K$ is an n-dimensional field extension, multiplication by any $w \in L$ is a K-endomorphism ψ_w of L. For a fixed choice of a K-basis of L, map every $w \in L$ to the determinant of the matrix of ψ_w with respect to the chosen basis. This mapping, regarded as a function of the coordinates of w with respect to the chosen basis, is easily seen to be an n-ary form that has no zero but the trivial one.
Lemma 3.4. Let M be a maximal ideal of D such that D/M is not algebraically closed. Then for every ideal \mathcal{I} of $\mathcal{R} = \mathcal{R}(E, D)$, $\mathcal{Z}_M(\mathcal{I})$ is closed under finite intersections.

Proof. Given $f, g \in \mathcal{I}$, we show that there exists $h \in \mathcal{I}$ with

$$h^{-1}(M) = f^{-1}(M) \cap g^{-1}(M).$$

Consider any finite-dimensional non-trivial field extension of D/M, and let n be the degree of the extension. The norm form of this field extension is a homogeneous polynomial in $n \geq 2$ indeterminates whose only zero in $(D/M)^n$ is the trivial one. By identifying $n - 1$ variables, we get a binary form $\bar{s} \in (D/M)[x, y]$ with no zero in $(D/M)^2$ other than $(0, 0)$. Let $s \in D[x, y]$ be a binary form that reduces to \bar{s} when the coefficients are taken mod M.

Now, given f and g in \mathcal{I}, we set $h = s(f, g)$. By the fact that \mathcal{R} contains all constant functions, h is in \mathcal{I}. Also, $h(e) \in M$ if and only if both $f(e) \in M$ and $g(e) \in M$, as desired. \qed

Lemma 3.5. Let M be a maximal ideal of D and $\mathcal{R} = \mathcal{R}(E, D)$ a ring of functions such that every $f \in \mathcal{R}$ takes values in only finitely many residue classes mod M.

Then for every ideal \mathcal{I} of \mathcal{R}, $\mathcal{Z}_M(\mathcal{I})$ is closed under finite intersections.

Proof. Again, given $f, g \in \mathcal{I}$, we show that there exists $h \in \mathcal{I}$ with

$$h^{-1}(M) = f^{-1}(M) \cap g^{-1}(M).$$

Let $A, B \subseteq D/M$ be finite sets of residue classes of D mod M such that $f(E)$ is contained in the union of A and $g(E)$ in the union of B.

We can interpolate any function from $(D/M)^2$ to (D/M) at any finite set of arguments by a polynomial in $(D/M)[x, y]$. Pick $\bar{s} \in (D/M)[x, y]$ with $\bar{s}(0, 0) = 0$ and $\bar{s}(a, b) = 1$ for all $(a, b) \in (A \times B) \setminus \{(0, 0)\}$. Let $s \in D[x, y]$ be a polynomial with zero constant coefficient that reduces to \bar{s} when the coefficients are taken mod M.

Now, given f and g in \mathcal{I}, we set $h = s(f, g)$. By the fact that \mathcal{R} contains all constant functions, h is in \mathcal{I}. Also, $h(e) \in M$ if and only if both $f(e) \in M$ and $g(e) \in M$, as desired. \qed

Definition 3.6. Let $\mathcal{R} = \mathcal{R}(E, D)$ be a ring of functions and M an ideal of D. We call $f \in \mathcal{R}$ an M-unit-valued function if $f(e) + M$ is a unit in D/M for every $e \in E$.

Theorem 3.7. Let M be a maximal ideal of D and \mathcal{I} an ideal of $\mathcal{R} = \mathcal{R}(E, D)$. Assume that either D/M is not algebraically closed or that each function in \mathcal{R} takes values in only finitely many residue classes mod M.

1. \mathcal{I} is contained in an ideal of the form M_F for some filter \mathcal{F} on E if and only if \mathcal{I} contains no M-unit-valued function.

2. Every ideal \mathcal{Q} of \mathcal{R} that is maximal with respect to not containing any M-unit-valued function is of the form M_U for some ultrafilter \mathcal{U} on E.

In particular, every maximal ideal of \(\mathcal{R} \) that does not contain any \(\mathcal{M} \)-unit-valued function is of the form \(\mathcal{M}_U \) for some ultrafilter \(U \) on \(E \).

Proof. Ad (1). If \(\mathcal{I} \) is contained in an ideal of the form \(\mathcal{M}_F \), \(\mathcal{I} \) cannot contain any \(\mathcal{M} \)-unit-valued function, because \(\mathcal{F} \) doesn’t contain the empty set.

Conversely, suppose that \(\mathcal{I} \) does not contain any \(\mathcal{M} \)-unit-valued function. Then \(\emptyset \notin \mathcal{M}(\mathcal{I}) \). By Lemmata 3.4 and 3.5, \(\mathcal{M}(\mathcal{I}) \) is closed under finite intersections. \(\mathcal{M}(\mathcal{I}) \), therefore, satisfies the finite intersection property. By Remark 2.2, \(\mathcal{M}(\mathcal{I}) \) is contained in a filter \(\mathcal{F} \) on \(E \). For this filter, \(\mathcal{I} \subseteq \mathcal{M}_F \), by Remark 3.2.

Ad (2). Suppose \(\mathcal{Q} \) is maximal with respect to not containing any \(\mathcal{M} \)-unit-valued function. By (1), \(\mathcal{Q} \subseteq \mathcal{M}_F \) for some filter \(\mathcal{F} \). Refine \(\mathcal{F} \) to an ultrafilter \(U \).

Then, by Remark 2.5, \(\mathcal{Q} \subseteq \mathcal{M}_F \subseteq \mathcal{M}_U \), and \(\mathcal{M}_U \) doesn’t contain any \(\mathcal{M} \)-unit-valued function. Since \(\mathcal{Q} \) is maximal with this property, \(\mathcal{Q} = \mathcal{M}_U \).

(3) is a special case of (2). \(\square \)

4. A Dichotomy of Maximal Ideals

In what follows, \(D \) is always a domain with quotient field \(K \), \(E \subseteq D \) and \(\mathcal{R} = \mathcal{R}(E, D) \) a ring of functions from \(E \) to \(D \) as in Def. 1.1. When the interpretation of \(\mathcal{R} \) as a subring of \(\prod_{e \in E} D \) is understood, then for \(\mathcal{M} \subseteq D \) we let \(\mathcal{R}(E, \mathcal{M}) = \{ f \in \mathcal{R} \mid f(E) \subseteq \mathcal{M} \} \).

Proposition 4.1. Let \(\mathcal{M} \) be a maximal ideal of \(D \) and \(\mathcal{Q} \) a maximal ideal of \(\mathcal{R} = \mathcal{R}(E, D) \). Then exactly one of the following two statements holds:

(1) \(\mathcal{Q} \) contains \(\mathcal{R}(E, \mathcal{M}) = \{ f \in \mathcal{R} \mid f(E) \subseteq \mathcal{M} \} \)

(2) \(\mathcal{Q} \) contains an element \(f \) with \(f(e) \equiv 1 \mod \mathcal{M} \) for all \(e \in E \).

Proof. The two cases are mutually exclusive, because any ideal \(\mathcal{Q} \) satisfying both statements must contain 1.

Now suppose \(\mathcal{Q} \) does not contain \(\mathcal{R}(E, \mathcal{M}) \). Let \(g \in \mathcal{R}(E, M) \setminus \mathcal{Q} \). By the maximality of \(\mathcal{Q} \), \(1 = h(x)g(x) + f(x) \) for some \(h \in \mathcal{R} \) and \(f \in \mathcal{Q} \). We see that \(f(x) = 1 - h(x)g(x) \in \mathcal{Q} \) satisfies \(f(e) \equiv 1 \mod \mathcal{M} \) for all \(e \in E \). \(\square \)

Recall that a function \(f \in \mathcal{R} \) is called \(\mathcal{M} \)-unit-valued if \(f(e) + \mathcal{M} \) is a unit in \(D/\mathcal{M} \) for every \(e \in E \).

Lemma 4.2. Let \(\mathcal{M} \) be an ideal of \(D \) and \(\mathcal{Q} \) an ideal of \(\mathcal{R} = \mathcal{R}(E, D) \). The following are equivalent:

(A) \(\mathcal{Q} \) contains an element \(f \) with \(f(e) \equiv 1 \mod \mathcal{M} \) for all \(e \in E \).

(B) \(\mathcal{Q} \) contains an \(\mathcal{M} \)-unit-valued function that takes values in only finitely many residue classes mod \(\mathcal{M} \).

Proof. To see that the a priori weaker statement implies the stronger, let \(g \in \mathcal{Q} \) be an \(\mathcal{M} \)-unit-valued function taking only finitely many different values mod \(\mathcal{M} \). Let \(d_1, \ldots, d_k \in D \) be representatives of the finitely many residue classes mod \(\mathcal{M} \) intersecting \(g(E) \) non-trivially, and \(u \in D \) an inverse mod \(\mathcal{M} \) of \((-1)^{k+1}d_1 \cdots d_k \).
Then
\[h(x) = \prod_{i=1}^{k} (g(x) - d_i) - (-1)^k d_1 \cdots d_k \]
is in \(\mathbb{Q} \) and \(h(e) \equiv (-1)^{k+1} d_1 \cdots d_k \mod M \) for all \(e \in E \). Therefore \(f(x) = uh(x) \in \mathbb{Q} \) satisfies \(f(e) \equiv 1 \mod M \) for all \(e \in E \).

Proposition 4.3. Let \(M \) be a maximal ideal of \(D \) and \(Q \) a maximal ideal of \(\mathcal{R} = \mathcal{R}(E, D) \). If each \(f \in \mathcal{R} \) takes values in only finitely many residue classes \(\mod M \) (in particular, if \(D/M \) happens to be finite) then exactly one of the following statements holds:

1. \(Q \) contains \(\mathcal{R}(E, M) = \{ f \in \mathcal{R} \mid f(E) \subseteq M \} \)
2. \(Q \) contains an \(M \)-unit-valued function.

Proof. This follows directly from Proposition 4.1 and Lemma 4.2. □

The Propositions in this section partition the maximal ideals of \(\mathcal{R} \) lying over a maximal ideal \(M \) of \(D \) into two types: those containing \(\mathcal{R}(E, M) \) (the kernel of the restriction to \(\mathcal{R} \) of the canonical projection \(\pi: \prod_{e \in E} D \rightarrow \prod_{e \in E} (D/M) \)), and the others.

In some cases, it is known that all maximal ideals of \(\mathcal{R} \) lying over \(M \) contain \(\mathcal{R}(E, M) \), notably if \(\mathcal{R} = \text{Int}(D) \) and \(M \) is finitely generated and of finite index in \(D \) [1, Ch. V], [4, Lemma 4.4]. We will find a sufficient condition for all maximal ideals of \(\mathcal{R} \) lying over \(M \) to contain \(\mathcal{R}(E, M) \) in Theorem 6.4.

We must not discount the possibility of a maximal ideal \(Q \) lying over \(M \) containing an \(M \)-unit-valued function, however. If \(D \) is an infinite domain, \(D[x] \) is embedded in \(D^D \) by mapping every polynomial to the corresponding polynomial function. When \(D/M \) is not algebraically closed, then there are certainly maximal ideals of \(D[x] \) lying over \(M \) that contain polynomials without a zero \(\mod M \).

5. Prime ideals containing \(\mathcal{R}(E, M) \)

We are now in a position to characterize the prime ideals of \(\mathcal{R} \) containing \(\mathcal{R}(E, D) \) as being precisely the ideals of the form \(M_U \) for ultrafilters \(U \) on \(E \), under the following hypothesis: every \(f \in \mathcal{R} \) takes values in only finitely many residue classes of \(M \).

This hypothesis may seem only marginally weaker than the assumption that \(D/M \) is finite. Note however, that it is sometimes satisfied for infinite \(D/M \) under perfectly natural circumstances, for instance, when \(E \) intersects only finitely many residue classes of \(M^n \) for each \(n \in \mathbb{N} \) (\(E \) precompact), and \(\mathcal{R} \) consists of functions that are uniformly \(M \)-adically continuous.

As in the case of integer-valued polynomials, we can show that every prime ideal of \(\mathcal{R}(E, D) \) containing \(\mathcal{R}(E, M) \) is maximal under certain conditions, notably if \(D/M \) is finite. The proof for \(\text{Int}(D) \), when \(D/M \) is finite [1, Lemma V.1.9.], carries over practically without change. Note that Definition 1.1 ensures that every ring
of functions \mathcal{R} contains all constant functions – an essential requirement of the following proof.

Lemma 5.1. Let M be a maximal ideal of D such that every function in $\mathcal{R} = \mathcal{R}(E,D)$ takes values in only finitely many residue classes mod M, and Q a prime ideal of $\mathcal{R}(E,D)$ containing $\mathcal{R}(E,M)$. Then Q is maximal and \mathcal{R}/Q is isomorphic to D/M.

Proof. Let Q be a prime ideal of $\mathcal{R}(E,D)$ containing $\mathcal{R}(E,M)$, and A a system of representatives of D mod M. It suffices to show that A (viewed as a set of constant functions) is also a system of representatives of \mathcal{R} mod Q. Let $f \in \mathcal{R}(E,D)$ and $a_1, \ldots, a_r \in A$ the representatives of those residue classes of M that intersect $f(E)$ non-trivially. Then $\prod_{i=1}^r (f - a_i)$ is in $\mathcal{R}(E,M) \subseteq Q$ and, Q being prime, one of the factors $(f - a_i)$ must be in Q. This shows that f is congruent mod Q to one of the constant functions a_1, \ldots, a_r, and, in particular, to an element of A. Therefore, A is a system of representatives of $\mathcal{R}(E,D)$ mod Q. □

Lemma 5.2. Let $\mathcal{R} = \mathcal{R}(E,D)$ a ring of functions and M a maximal ideal of D such that every $f \in \mathcal{R}$ takes values in only finitely many residue classes of M. Let \mathcal{I} be an ideal of \mathcal{R}.

Then \mathcal{I} is contained in an ideal of the form M_F for a filter F on E if and only if $\mathcal{R}(E,M) \subseteq \mathcal{I}$.

Proof. $\mathcal{R}(E,M) \subseteq \mathcal{I}$ is equivalent to \mathcal{I} not containing an M-unit-valued function, by Proposition 4.3. The statement therefore follows from part (1) of Theorem 3.7. □

Theorem 5.3. Let $\mathcal{R} = \mathcal{R}(E,D)$ a ring of functions, and M a maximal ideal of D. If every $f \in \mathcal{R}$ takes values in only finitely many residue classes of M (and, in particular, if D/M is finite), then the prime ideals of \mathcal{R} containing $\mathcal{R}(E,M)$ are exactly the ideals of the form M_U with U an ultrafilter on E. Each of them is maximal and its residue field isomorphic to D/M.

Proof. Let Q be a prime ideal of \mathcal{R} containing $\mathcal{R}(E,M)$. By Lemma 5.1, Q is maximal and \mathcal{R}/Q is isomorphic to D/M. By Lemma 5.2, $Q \subseteq M_F$ for some filter F on E. F can be refined to an ultrafilter U on E, and then $Q \subseteq M_F \subseteq M_U \neq \mathcal{R}$, by Remark 2.5. Since Q is maximal, $Q = M_U$ follows.

Conversely, every ideal of the form M_U for an ultrafilter U on E is prime, by Lemma 2.6, and contains $\mathcal{R}(E,M)$, by Remark 2.5. □

Note, in particular, that Theorems 3.7 and 5.3 apply to $\mathcal{R} = \text{Int}(E,D)$. In this way, we see, when M is a maximal ideal of finite index in D, that prime ideals of $\text{Int}(E,D)$ containing $\text{Int}(D,M)$ are inverse images of prime ideals of D^E, and ultimately come from ultrapowers of (D/M), as in the discussion after Lemma 2.6.
6. DIVISIBLE RINGS OF FUNCTIONS

Let \(\mathcal{R} \subseteq D^E \) be a ring of functions and \(M \) a maximal ideal of \(D \). We have seen that we can describe those maximal ideals of \(\mathcal{R} \) lying over \(M \) that contain \(\mathcal{R}(E,M) \). We would like to know under what conditions this holds for every maximal ideal of \(\mathcal{R} \) lying over \(M \).

In the case where \(M \) is a maximal ideal of finite index in a one-dimensional Noetherian domain \(D \), Chabert showed that every maximal ideal of \(\text{Int}(D) \) lying over \(M \) contains \(\text{Int}(D,M) \), cf. [1, Prop. V.1.11] and [4, Lemma 3.3]. Once we know this, Theorem 5.3 is applicable. It can be used to give an alternative proof of the fact that every prime ideal of \(\text{Int}(D) \) lying over \(M \) is maximal and of the form \(M_{\alpha} = \{ f \in \text{Int}(D) \mid f(\alpha) \in \hat{M} \} \) for an element \(\alpha \) in the \(M \)-adic completion of \(D \).

We will now generalize Chabert’s argument from integer-valued polynomials to a class of rings of functions which we call divisible. Note that we do not have to restrict ourselves to Noetherian domains; we only require the individual maximal ideal for which we study the primes of \(\mathcal{R} \) lying over it to be finitely generated. It is true that our questions only localize well when the domain is Noetherian, but we will pursue a different course, not relying on localization.

Definition 6.1. Let \(R \) be a commutative ring and \(E \subseteq R \). We call a ring of functions \(\mathcal{R} \subseteq R^E \) **divisible** if it has the following property: If \(f \in \mathcal{R} \) is such that \(f(E) \subseteq cR \) for some non-zero \(c \in R \), then every function \(g \in R^E \) satisfying \(cg(x) = f(x) \) is also in \(\mathcal{R} \).

We call \(\mathcal{R} \) **weakly divisible** if for every \(f \in \mathcal{R} \) and every non-zero \(c \in R \) such that \(f(E) \subseteq cR \), there exists a function \(g \in \mathcal{R} \) with \(cg(x) = f(x) \).

If \(R \) is a domain, we note that \(g(x) \) in the above definition is unique and that, therefore, for domains, weakly divisible is equivalent to divisible.

Example 6.2.

1. \(\text{Int}(E,D) \) is divisible. - This is our motivation.

2. If \(D \) is a valuation domain with maximal ideal \(M \) then the ring of uniformly \(M \)-adically continuous functions from \(E \) to \(D \) (\(E \subseteq D \) equipped with subspace topology of \(M \)-adic topology) is a divisible ring of functions.

We now consider minimal prime ideals of non-zero principal ideals, that is, \(P \) containing some \(p \neq 0 \) such that there is no prime ideal strictly contained in \(P \) and containing \(p \). If \(D \) is Noetherian, this condition reduces to “\(\text{ht}(P) = 1 \)”. In non-Noetherian domains, we find examples with \(\text{ht}(P) > 1 \), for instance, the maximal ideal of a finite-dimensional valuation domain.

Lemma 6.3. Let \(R \) be a domain, \(P \) a finitely generated prime ideal that is a minimal prime of a non-zero principal ideal \((p) \subseteq P \). Then there exist \(m \in \mathbb{N} \) and \(s \in R \setminus P \) such that \(sp^m \subseteq pR \).

Proof. In the localization \(R_P \), \(P_P \) is the radical of \(pR_P \). Therefore, since \(P \) (and hence \(P_P \)) is finitely generated, there exists \(m \in \mathbb{N} \) with \(P_P^m \subseteq pR_P \) and in
particular $P^m \subseteq pR$. The ideal P^m is also finitely generated, by p_1, \ldots, p_k, say. Let $a_i \in R$ with $p_i = pa_i$. By considering the fractions $a_i = r_i/s_i$ (with $r_i \in R$ and $s_i \in R \setminus P$), and setting $s = s_1 \cdots s_k$, we see that $sP^m \subseteq pR$ as desired. □

Theorem 6.4. Let D be a domain and P a finitely generated prime ideal that is a minimal prime of a non-zero principal ideal. Let $R \subseteq D^E$ be a divisible ring of functions from E to D. Then every prime ideal Q of R with $Q \cap D = P$ contains $R(E,P)$.

Proof. Let $f \in R(E,P)$. Let $p \in P$ non-zero and such that there is no prime ideal P_1 with $(p) \subseteq P_1 \subsetneq P$. By Lemma 6.3, there are $m \in \mathbb{N}$ and $s \in D \setminus P$ such that $s^m p \subseteq pD$. Then $sf^m \in R(E,pD)$. Since R is divisible, $sf^m = pg$ for some $g \in R(E,D)$. Therefore, $sf^m \in pR(E,D) \subseteq Q$. As Q is prime and $s \notin Q$, we conclude that $f \in Q$. □

Corollary 6.5. Let D be a domain, M a finitely generated maximal ideal of height 1, and E a subset of D. Let $R \subseteq D^E$ be a divisible ring of functions from E to D, such that each $f \in R$ takes its values in only finitely many residue classes of M in D.

Then the prime ideals of R lying over M are precisely the ideals of the form M_U for an ultrafilter U on E. Each M_U is a maximal ideal and its residue field isomorphic to D/M.

Proof. This follows from Theorem 6.4 via Theorem 5.3. □

To summarize, we can, using ultrafilters, describe certain prime ideals of a ring of functions $R = R(E,D)$ lying over a maximal ideal M pretty well: namely, those prime ideals that do not contain M-unit-valued functions (Theorem 3.7), or that contain $R(E,M)$ (Theorem 5.3).

We have, so far, little information about when all prime ideals of R lying over M are of this form, apart from the sufficient condition in Theorem 6.4.

If we restrict our attention to rings of functions R with $D[x] \subseteq R(E,D) \subseteq D^E$, it would be interesting to find a precise criterion, perhaps involving topological density, for this property.

Note that in the “nicest” case, that of $\text{Int}(D)$, where D is a Dedekind ring with finite residue fields, not only is $\text{Int}(D,M)$ contained in every prime ideal of $\text{Int}(D)$ lying over a maximal ideal M of D, but also $\text{Int}(D)$ is dense in D^D with product topology of discrete topology on D [2,3].

References

Department of Analysis and Number Theory (5010), Technische Universität Graz, Kopernikusgasse 24, 8010 Graz, Austria

E-mail address: frisch@math.tugraz.at