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ON THE SPECTRUM OF RINGS OF FUNCTIONS

SOPHIE FRISCH

Abstract. For D a domain and E ⊆ D, we investigate the prime spectrum
of rings of functions from E to D, that is, of rings contained in

∏
e∈E

D and
containing D. Among other things, we characterize, when M is a maximal
ideal of finite index in D, those prime ideals lying above M which contain the
kernel of the canonical map to

∏
e∈E

(D/M) as being precisely the prime ideals
corresponding to ultrafilters on E. We give a sufficient condition for when
all primes above M are of this form and thus establish a correspondence to
the prime spectra of ultraproducts of residue class rings of D. As a corollary,
we obtain a description using ultrafilters, differing from Chabert’s original one
which uses elements of the M -adic completion, of the prime ideals in the ring of
integer-valued polynomials Int(D) lying above a maximal ideal of finite index.

1. Introduction

Let D be an integral domain, E ⊆ D, and R a subring of
∏

e∈E D, containing D.
The elements of R can be interpreted as functions from E to D and, consequently,
we call R a ring of functions from E to D. We will investigate the prime spectra
of such rings of functions. We obtain, for quite general R, a partial description
of the prime spectrum, cf. Theorems 3.7 and 5.3, and in special cases a complete
characterization, cf. Corollary 6.5.

Our motivation is the spectrum of a ring of integer-valued polynomials: For D an
integral domain with quotient field K, let Int(D) = {f ∈ K[x] | f(D) ⊆ D} be the
ring of integer-valued polynomials on D. More generally, when K is understood,
we let Int(A,B) = {f ∈ K[x] | f(A) ⊆ B} for A,B ⊆ K.

If D is a Noetherian one-dimensional domain, a celebrated theorem of Chabert
[1, Ch. V] states that every prime ideal of Int(D) lying over a maximal ideal M of
finite index in D is maximal and of the form

Mα = {f ∈ Int(D) | f(α) ∈ M̂},

where α is an element of the M-adic completion D̂M of D and M̂ the maximal
ideal of D̂M .
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In fact, Chabert showed two separate statements independently – both under
the assumption that D is Noetherian and one-dimensional and M a maximal ideal
of finite index of D:

(1) Every maximal ideal of Int(D) containing Int(D,M) is of the form Mα for

some α ∈ D̂M .
(2) Every maximal ideal of Int(D) lying over M contains Int(D,M).

For a simplified proof of Chabert’s result, see [4], Lemma 4.4 and the remark
following it.

We will show that a modified version of statement (1) holds in far greater gen-
erality, for rings of functions. The modification consists in replacing elements of
the M-adic completion by ultrafilters.

Whether (2) holds or not for a particular D and a particular subring of DE will
have to be examined separately. It is, in some sense, a question of density of the
subring in the product

∏
e∈E D.

We will work in the following setting:

Definition 1.1. Let D be a commutative ring and E ⊆ D. Let R be a commutative
ring and ϕ : R →

∏
e∈E D a monomorphism of rings. ϕ allows us to interpret the

elements of R as functions from E to D.
If all constant functions are contained in ϕ(R), we call the pair (R, ϕ) a ring of

functions from E to D. We use R = R(E,D) (where ϕ is understood) to denote
a ring of functions from E to D.

Remark 1.2. For our considerations it is vital that R = R(E,D) contain all
constant functions, because we will make extensive use of the following fact: when
I is an ideal of R = R(E,D), f ∈ I and g ∈ D[x] a polynomial with zero constant
term, then g(f) ∈ I, and similarly, if g is a polynomial in several variables over
D with zero constant term, and an element of I is substituted for each variable in
g, then, an element of I results.

Let us note that considerable research has been done on the spectrum of a power
of a ring DE =

∏
d∈E D or a product of rings

∏
e∈E De. Gilmer and Heinzer [5,

Prop. 2.3] have determined the spectrum of an infinite product of local rings, and
Levy, Loustaunau and Shapiro [8] that of an infinite power of Z. Our focus here
is not on the full product of rings, but on comparatively small subrings and the
question of how much information about the spectrum of a ring can be obtained
from its embedding in a power of a domain.

One ring can be embedded in different products: Int(D) can be seen as a ring of
functions from K to K as well as a ring of functions from D to D. We will glean a
lot more information about the spectrum of Int(D) from the second interpretation
than from the first.
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2. Prime ideals corresponding to ultrafilters

Let R = R(E,D) be a ring of functions from E to D as in Definition 1.1. We
will now make precise the concept of ideals corresponding to ultrafilters, and the
connection to ultraproducts

∏U

e∈E(D/M), where M is a maximal ideal of D, and
U an ultrafilter on E. First a quick review of filters, ultrafilters and ultraproducts:

Definition 2.1. Let S be a set. A non-empty collection F of subsets of S is called
a filter on S if

(1) ∅ /∈ F .
(2) A,B ∈ F implies A ∩B ∈ F .
(3) A ⊆ C ⊆ S with A ∈ F implies C ∈ F .

A filter F on S is called an ultrafilter on S if, for every C ⊆ S, either C ∈ F or
S \ C ∈ F .

Let S be a fixed set and P(S) its power-set. For C ∈ P(S), a superset of C is
a set D ∈ P(S) with C ⊆ D ⊆ S. A collection C of subsets of S is said to have
the finite intersection property if the intersection of any finitely many members of
C is non-empty.

Remark 2.2. Clearly, a necessary and sufficient condition for C ⊆ P(S) to be
contained in a filter on S is that C satisfies the finite intersection property. If the
finite intersection property is satisfied, then the supersets of finite intersections of
members of C form a filter.

Although, strictly speaking, we do not need ultraproducts to prove our results,
we will nevertheless introduce them, because they provide context, in particular
to Lemma 2.6, and to sections 3 and 5.

Definition 2.3. Let S be an index set and U an ultrafilter on S. Suppose we are
given, for each s ∈ S, a ring Rs. Then the ultraproduct of rings

∏U

s∈S Rs is defined
as the direct product

∏
s∈S Rs modulo the congruence relation

(rs)s∈S ∼ (ts)s∈S ⇐⇒ {s ∈ S | rs = ts} ∈ U .

Ultraproducts of other algebraic structures are defined analogously. The use-
fulness of ultraproducts is captured by the Theorem of  Loś (cf. [6, Chpt. 3.2]

or [7, Prop 1.6.14]) which states that an ultraproduct
∏U

s∈S Rs satisfies a first-
order formula if and only if the set of indices s for which Rs satisfies the formula is
in U . Here first-order formula means a formula in the first-order language whose
only non-logical symbols (apart from the equality sign) are symbols for the alge-
braic operations; for instance, + and · in the case of an ultraproduct of rings.

Definition 2.4. Let D be a domain, E ⊆ D, R = R(E,D) a ring of functions, I
an ideal of D and F a filter on E.

For f ∈ R(E,D), we let f−1(I) = {e ∈ E | f(e) ∈ I} and define

IF = {f ∈ R(E,D) | f−1(I) ∈ F}
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Remark 2.5. Let everything as in Definition 2.4, I, J ideals of D and F ,G filters
on E. Some easy consequences of Definition 2.4 are:

(1) If I 6= D then IF 6= R.
(2) IF is an ideal of R containing R(E, I) = {f ∈ R | f(E) ⊆ I}.
(3) I ⊆ J =⇒ IF ⊆ JF
(4) F ⊆ G =⇒ IF ⊆ IG

Lemma 2.6. Let D be a domain, E ⊆ D, and R = R(E,D) a ring of functions
from E to D.

Then for every prime ideal P of D and every ultrafilter U on E, PU is a prime
ideal of R.

Proof. Easy direct verification: let fg ∈ PU ; because P is a prime ideal of D, the
inverse image of P under f · g is the union of f−1(P ) and g−1(P ). If the union of
two sets is in an ultrafilter, then one of them must be in the ultrafilter. Therefore,
f ∈ PU or g ∈ PU . Also, PU cannot be all of R because it doesn’t contain the
constant function 1. �

One way of looking at PU is by considering the following commuting diagram
of ring-homomorphisms, where π and π1 mean applying the canonical projection
in each factor of the product, and σ and σ1 mean factoring through the defining
congruence relation of an ultraproduct.

R
∏

e∈E D
∏U

e∈E D

∏
e∈E(D/P )

∏U

e∈E(D/P )

ϕ σ1

π π1

σ

PU is the kernel of the following composition of ring homomorphisms:

ϕ : R →
∏

e∈E

D

followed by the canonical projection

π :
∏

e∈E

D →
∏

e∈E

(D/P )

and the canonical projection

σ :
∏

e∈E

(D/P ) →
U∏

e∈E

(D/P )

Since D/P is an integral domain, any ultraproduct of copies of D/P is also
an integral domain, by the Theorem of  Loś. Therefore (0) is a prime ideal of∏U

e∈E(D/P ) and hence PU a prime ideal of R. We also see that PU is the inverse
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image of a prime ideal of
∏

e∈E D under ϕ, and further, of a prime ideal of the

ultraproduct
∏U

e∈E D under σ1 ◦ ϕ.

3. The set of zero-loci mod M of an ideal of the ring of functions

As before, D is a domain with quotient field K, E ⊆ D and R = R(E,D) a
ring of functions from E to D as in Def. 1.1. Especially, recall from Def. 1.1 that
R is assumed to contain all constant functions.

Definition 3.1. For M ⊆ D and f ∈ R = R(E,D), let

f−1(M) = {e ∈ E | f(e) ∈M}.

For an ideal M of D and an ideal I of R, let

ZM(I) = {f−1(M) | f ∈ I}

Recall from Def. 2.4 that for a filter F on E,

MF = {f ∈ R(E,D) | f−1(M) ∈ F}

Remark 3.2. Note that the above definition implies

(1) I ⊆ J =⇒ ZM(I) ⊆ ZM(J )
(2) I ⊆MF ⇐⇒ ZM(I) ⊆ F

Lemma 3.3. Let M be an ideal of D and I an ideal of R. The following are
equivalent:

(a) There exists a filter F on E such that I ⊆ MF .
(b) ZM(I) satisfies the finite intersection property.

Proof. If I ⊆ MF , then ZM(I) is contained in F and hence satisfies the finite
intersection property. Conversely, if ZM (I) satisfies the finite intersection property
then, by Remark 2.2, the supersets of finite intersections of sets in ZM(I) form a
filter F on E for which ZM (I) ⊆ F and hence I ⊆MF . �

In the case where R(E,D) =
∏

e∈E D is the ring of all functions from E to
D, much more can be said; see the papers by Gilmer and Heinzer [5, Prop. 2.3]
(concerning local rings) and Levy, Loustaunau and Shapiro [8] (concerning D = Z).

For a field K that is not algebraically closed, we will need, for an arbitrary n ≥ 2,
an n-ary form that has no zero but the trivial one. For this purpose, recall how
to define a norm form: if L : K is an n-dimensional field extension, multiplication
by any w ∈ L is a K-endomorphism ψw of L. For a fixed choice of a K-basis of
L, map every w ∈ L to the determinant of the matrix of ψw with respect to the
chosen basis. This mapping, regarded as a function of the coordinates of w with
respect to the chosen basis, is easily seen to be an n-ary form that has no zero but
the trivial one.
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Lemma 3.4. Let M be a maximal ideal of D such that D/M is not algebraically
closed. Then for every ideal I of R = R(E,D), ZM(I) is closed under finite
intersections.

Proof. Given f, g ∈ I, we show that there exists h ∈ I with

h−1(M) = f−1(M) ∩ g−1(M).

Consider any finite-dimensional non-trivial field extension of D/M , and let n be
the degree of the extension. The norm form of this field extension is a homogeneous
polynomial in n ≥ 2 indeterminates whose only zero in (D/M)n is the trivial one.
By identifying n− 1 variables, we get a binary form s̄ ∈ (D/M)[x, y] with no zero
in (D/M)2 other than (0, 0). Let s ∈ D[x, y] be a binary form that reduces to s̄
when the coefficients are taken mod M .

Now, given f and g in I, we set h = s(f, g). By the fact that R contains all
constant functions, h is in I. Also, h(e) ∈ M if and only if both f(e) ∈ M and
g(e) ∈M , as desired. �

Lemma 3.5. LetM be a maximal ideal of D and R = R(E,D) a ring of functions
such that every f ∈ R takes values in only finitely many residue classes mod M .

Then for every ideal I of R, ZM(I) is closed under finite intersections.

Proof. Again, given f, g ∈ I, we show that there exists h ∈ I with

h−1(M) = f−1(M) ∩ g−1(M).

Let A,B ⊆ D/M be finite sets of residue classes of D mod M such that f(E)
is contained in the union of A and g(E) in the union of B.

We can interpolate any function from (D/M)2 to (D/M) at any finite set of
arguments by a polynomial in (D/M)[x, y]. Pick s̄ ∈ (D/M)[x, y] with s̄(0, 0) = 0
and s̄(a, b) = 1 for all (a, b) ∈ (A× B) \ {(0, 0)}. Let s ∈ D[x, y] be a polynomial
with zero constant coefficient that reduces to s̄ when the coefficients are taken
mod M .

Now, given f and g in I, we set h = s(f, g). By the fact that R contains all
constant functions, h is in I. Also, h(e) ∈ M if and only if both f(e) ∈ M and
g(e) ∈M , as desired. �

Definition 3.6. Let R = R(E,D) be a ring of functions and M an ideal of D.
We call f ∈ R an M-unit-valued function if f(e) +M is a unit in D/M for every
e ∈ E.

Theorem 3.7. Let M be a maximal ideal of D and I an ideal of R = R(E,D).
Assume that either D/M is not algebraically closed or that each function in R
takes values in only finitely many residue classes mod M .

(1) I is contained in an ideal of the form MF for some filter F on E if and
only if I contains no M-unit-valued function.

(2) Every ideal Q of R that is maximal with respect to not containing any
M-unit-valued function is of the form MU for some ultrafilter U on E.
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(3) In particular, every maximal ideal of R that does not contain any M-unit-
valued function is of the form MU for some ultrafilter U on E.

Proof. Ad (1). If I is contained in an ideal of the form MF , I cannot contain any
M-unit-valued function, because F doesn’t contain the empty set.

Conversely, suppose that I does not contain any M-unit-valued function. Then
∅ /∈ ZM (I). By Lemmata 3.4 and 3.5, ZM(I) is closed under finite intersections.
ZM(I), therefore, satisfies the finite intersection property. By Remark 2.2, ZM(I)
is contained in a filter F on E. For this filter, I ⊆ MF , by Remark 3.2.

Ad (2). Suppose Q is maximal with respect to not containing any M-unit-
valued function. By (1), Q ⊆ MF for some filter F . Refine F to an ultrafilter U .
Then, by Remark 2.5, Q ⊆ MF ⊆MU , and MU doesn’t contain any M-unit-valued
function. Since Q is maximal with this property, Q = MU .

(3) is a special case of (2). �

4. A dichotomy of maximal ideals

In what follows, D is always a domain with quotient field K, E ⊆ D and R =
R(E,D) a ring of functions from E to D as in Def. 1.1. When the interpretation
of R as a subring of

∏
e∈E D is understood, then for M ⊆ D we let

R(E,M) = {f ∈ R | f(E) ⊆M}.

Proposition 4.1. Let M be a maximal ideal of D and Q a maximal ideal of
R = R(E,D). Then exactly one of the following two statements holds:

(1) Q contains R(E,M) = {f ∈ R | f(E) ⊆M}
(2) Q contains an element f with f(e) ≡ 1 mod M for all e ∈ E.

Proof. The two cases are mutually exclusive, because any ideal Q satisfying both
statements must contain 1.

Now suppose Q does not contain R(E,M). Let g ∈ R(E,M) \ Q. By the
maximality of Q, 1 = h(x)g(x) + f(x) for some h ∈ R and f ∈ Q. We see that
f(x) = 1 − h(x)g(x) ∈ Q satisfies f(e) ≡ 1 mod M for all e ∈ E. �

Recall that a function f ∈ R is called M-unit-valued if f(e) + M is a unit in
D/M for every e ∈ E.

Lemma 4.2. Let M be an ideal of D and Q an ideal of R = R(E,D). The
following are equivalent:

(A) Q contains an element f with f(e) ≡ 1 mod M for all e ∈ E.
(B) Q contains an M-unit-valued function that takes values in only finitely

many residue classes mod M .

Proof. To see that the a priori weaker statement implies the stronger, let g ∈ Q
be an M-unit-valued function taking only finitely many different values mod M .
Let d1, . . . , dk ∈ D be representatives of the finitely many residue classes mod M
intersecting g(E) non-trivially, and u ∈ D an inverse mod M of (−1)k+1d1 · . . . ·dk.
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Then

h(x) =

k∏

i=1

(g(x) − di) − (−1)kd1 · . . . · dk

is in Q and h(e) ≡ (−1)k+1d1 · . . . · dk mod M for all e ∈ E. Therefore f(x) =
uh(x) ∈ Q satisfies f(e) ≡ 1 mod M for all e ∈ E. �

Proposition 4.3. Let M be a maximal ideal of D and Q a maximal ideal of
R = R(E,D). If each f ∈ R takes values in only finitely many residue classes mod
M (in particular, if D/M happens to be finite) then exactly one of the following
statements holds:

(1) Q contains R(E,M) = {f ∈ R | f(E) ⊆M}
(2) Q contains an M-unit-valued function.

Proof. This follows directly from Proposition 4.1 and Lemma 4.2. �

The Propositions in this section partition the maximal ideals of R lying over
a maximal ideal M of D into two types: those containing R(E,M) (the kernel
of the restriction to R of the canonical projection π :

∏
e∈E D −→

∏
e∈E(D/M)),

and the others.
In some cases, it is known that all maximal ideals of R lying over M contain

R(E,M), notably if R = Int(D) and M is finitely generated and of finite index in
D [1, Ch. V], [4, Lemma 4.4]. We will find a sufficient condition for all maximal
ideals of R lying over M to contain R(E,M) in Theorem 6.4.

We must not discount the possibility of a maximal ideal Q lying over M con-
taining an M-unit-valued function, however. If D is an infinite domain, D[x] is
embedded in DD by mapping every polynomial to the corresponding polynomial
function. When D/M is not algebraically closed, then there are certainly maximal
ideals of D[x] lying over M that contain polynomials without a zero mod M .

5. Prime ideals containing R(E,M)

We are now in a position to characterize the prime ideals of R containing
R(E,D) as being precisely the ideals of the form MU for ultrafilters U on E,
under the following hypothesis: every f ∈ R takes values in only finitely many
residue classes of M .

This hypothesis may seem only marginally weaker than the assumption that
D/M is finite. Note however, that it is sometimes satisfied for infinite D/M under
perfectly natural circumstances, for instance, when E intersects only finitely many
residue classes of Mn for each n ∈ N (E precompact), and R consists of functions
that are uniformly M-adically continuous.

As in the case of integer-valued polynomials, we can show that every prime ideal
of R(E,D) containing R(E,M) is maximal under certain conditions, notably if
D/M is finite. The proof for Int(D), when D/M is finite [1, Lemma V.1.9.], carries
over practically without change. Note that Definition 1.1 ensures that every ring
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of functions R contains all constant functions – an essential requirement of the
following proof.

Lemma 5.1. Let M be a maximal ideal of D such that every function in R =
R(E,D) takes values in only finitely many residue classes mod M , and Q a prime
ideal of R(E,D) containing R(E,M). Then Q is maximal and R/Q is isomorphic
to D/M .

Proof. Let Q be a prime ideal of R(E,D) containing R(E,M), and A a system of
representatives of D mod M . It suffices to show that A (viewed as a set of constant
functions) is also a system of representatives of R mod Q. Let f ∈ R(E,D) and
a1, . . . , ar ∈ A the representatives of those residue classes of M that intersect f(E)
non-trivially. Then

∏r

i=1
(f − ai) is in R(E,M) ⊆ Q and, Q being prime, one of

the factors (f −ai) must be in Q. This shows that f is congruent mod Q to one of
the constant functions a1, . . . , ar, and, in particular, to an element of A. Therefore,
A is a system of representatives of R(E,D) mod Q. �

Lemma 5.2. Let R = R(E,D) a ring of functions and M a maximal ideal of D
such that every f ∈ R takes values in only finitely many residue classes of M . Let
I be an ideal of R.

Then I is contained in an ideal of the form MF for a filter F on E if and only
if R(E,M) ⊆ I.

Proof. R(E,M) ⊆ I is equivalent to I not containing an M-unit-valued function,
by Proposition 4.3. The statement therefore follows from part (1) of Theorem 3.7.

�

Theorem 5.3. Let R = R(E,D) a ring of functions, and M a maximal ideal of
D. If every f ∈ R takes values in only finitely many residue classes of M (and,
in particular, if D/M is finite), then the prime ideals of R containing R(E,M)
are exactly the ideals of the form MU with U an ultrafilter on E. Each of them is
maximal and its residue field isomorphic to D/M .

Proof. Let Q be a prime ideal of R containing R(E,M). By Lemma 5.1, Q is
maximal and R/Q is isomorphic to D/M . By Lemma 5.2, Q ⊆MF for some filter
F on E. F can be refined to an ultrafilter U on E, and then Q ⊆MF ⊆ MU 6= R,
by Remark 2.5. Since Q is maximal, Q = MU follows.

Conversely, every ideal of the form MU for an ultrafilter U on E is prime, by
Lemma 2.6, and contains R(E,M), by Remark 2.5. �

Note, in particular, that Theorems 3.7 and 5.3 apply to R = Int(E,D). In this
way, we see, when M is a maximal ideal of finite index in D, that prime ideals
of Int(E,D) containing Int(D,M) are inverse images of prime ideals of DE, and
ultimately come from ultrapowers of (D/M), as in the discussion after Lemma 2.6.
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6. Divisible rings of functions

Let R ⊆ DE be a ring of functions and M a maximal ideal of D. We have
seen that we can describe those maximal ideals of R lying over M that contain
R(E,M). We would like to know under what conditions this holds for every
maximal ideal of R lying over M .

In the case where M is a maximal ideal of finite index in a one-dimensional
Noetherian domain D, Chabert showed that every maximal ideal of Int(D) lying
over M contains Int(D,M), cf. [1, Prop. V.1.11] and [4, Lemma 3.3]. Once we
know this, Theorem 5.3 is applicable. It can be used to give an alternative proof
of the fact that every prime ideal of Int(D) lying over M is maximal and of the

form Mα = {f ∈ Int(D) | f(α) ∈ M̂} for an element α in the M-adic completion
of D.

We will now generalize Chabert’s argument from integer-valued polynomials to
a class of rings of functions which we call divisible. Note that we do not have to
restrict ourselves to Noetherian domains; we only require the individual maximal
ideal for which we study the primes of R lying over it to be finitely generated. It
is true that our questions only localize well when the domain is Noetherian, but
we will pursue a different course, not relying on localization.

Definition 6.1. Let R be a commutative ring and E ⊆ R. We call a ring of
functions R ⊆ RE divisible if it has the following property: If f ∈ R is such
that f(E) ⊆ cR for some non-zero c ∈ R, then every function g ∈ RE satisfying
cg(x) = f(x) is also in R.

We call R weakly divisible if for every f ∈ R and every non-zero c ∈ R such
that f(E) ⊆ cR, there exists a function g ∈ R with cg(x) = f(x).

If R is a domain, we note that g(x) in the above definition is unique and that,
therefore, for domains, weakly divisible is equivalent to divisible.

Example 6.2. (1) Int(E,D) is divisible. - This is our motivation.
(2) If D is a valuation domain with maximal ideal M then the ring of uni-

formly M-adically continuous functions from E to D (E ⊆ D equipped
with subspace topology of M-adic topology) is a divisible ring of functions.

We now consider minimal prime ideals of non-zero principal ideals, that is, P
containing some p 6= 0 such that there is no prime ideal strictly contained in P and
containing p. If D is Noetherian, this condition reduces to “ht(P ) = 1”. In non-
Noetherian domains, we find examples with ht(P ) > 1, for instance, the maximal
ideal of a finite-dimensional valuation domain.

Lemma 6.3. Let R be a domain, P a finitely generated prime ideal that is a
minimal prime of a non-zero principal ideal (p) ⊆ P . Then there exist m ∈ N and
s ∈ R \ P such that sPm ⊆ pR.

Proof. In the localization RP , PP is the radical of pRP . Therefore, since P (and
hence PP ) is finitely generated, there exists m ∈ N with PP

m ⊆ pRP and in
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particular Pm ⊆ pRP . The ideal Pm is also finitely generated, by p1, . . . , pk, say.
Let ai ∈ RP with pi = pai. By considering the fractions ai = ri/si (with ri ∈ R
and si ∈ R \P ), and setting s = s1 · . . . · sk, we see that sPm ⊆ pR as desired. �

Theorem 6.4. Let D be a domain and P a finitely generated prime ideal that is
a minimal prime of a non-zero principal ideal. Let R ⊆ DE be a divisible ring of
functions from E to D. Then every prime ideal Q of R with Q∩D = P contains
R(E, P ).

Proof. Let f ∈ R(E, P ). Let p ∈ P non-zero and such that there is no prime ideal
P1 with (p) ⊆ P1 ( P . By Lemma 6.3, there are m ∈ N and s ∈ D \ P such
that sPm ⊆ pD. Then sfm ∈ R(E, pD). Since R is divisible, sfm = pg for some
g ∈ R(E,D). Therefore, sfm ∈ pR(E,D) ⊆ Q. As Q is prime and s /∈ Q, we
conclude that f ∈ Q. �

Corollary 6.5. Let D be a domain, M a finitely generated maximal ideal of height
1, and E a subset of D. Let R ⊆ DE be a divisible ring of functions from E to D,
such that each f ∈ R takes its values in only finitely many residue classes of M
in D.

Then the prime ideals of R lying over M are precisely the ideals of the form
MU for an ultrafilter U on E. Each MU is a maximal ideal and its residue field
isomorphic to D/M .

Proof. This follows from Theorem 6.4 via Theorem 5.3. �

To summarize, we can, using ultrafilters, describe certain prime ideals of a ring
of functions R = R(E,D) lying over a maximal ideal M pretty well: namely, those
prime ideals that do not contain M-unit-valued functions (Theorem 3.7), or that
contain R(E,M) (Theorem 5.3).

We have, so far, little information about when all prime ideals of R lying over
M are of this form, apart from the sufficient condition in Theorem 6.4.

If we restrict our attention to rings of functions R with D[x] ⊆ R(E,D) ⊆ DE,
it would be interesting to find a precise criterion, perhaps involving topological
density, for this property.

Note that in the “nicest” case, that of Int(D), where D is a Dedekind ring with
finite residue fields, not only is Int(D,M) contained in every prime ideal of Int(D)
lying over a maximal ideal M of D, but also Int(D) is dense in DD with product
topology of discrete topology on D [2, 3].
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