REMARKS ON POLYNOMIAL PARAMETRIZATION
OF SETS OF INTEGER POINTS

Sophie Frisch

Abstract. If, for a subset \(S \) of \(\mathbb{Z}^k \), we compare the conditions of being parametrizable (a) by a single \(k \)-tuple of polynomials with integer coefficients, (b) by a single \(k \)-tuple of integer-valued polynomials and (c) by finitely many \(k \)-tuples of polynomials with integer coefficients (variables ranging through the integers in each case), then \(a \Rightarrow b \) (obviously), \(b \Rightarrow c \), and neither implication is reversible. Condition (b) is equivalent to \(S \) being the set of integer \(k \)-tuples in the range of a \(k \)-tuple of polynomials with rational coefficients, as the variables range through the integers. Also, we show that every co-finite subset of \(\mathbb{Z}^k \) is parametrizable a single \(k \)-tuple of polynomials with integer coefficients.

If \(f = (f_1, \ldots, f_k) \in (\mathbb{Z}[x_1, \ldots, x_n])^k \) is a \(k \)-tuple of polynomials with integer coefficients in several variables, we call range or image of \(f \) the range of the function \(f : \mathbb{Z}^n \rightarrow \mathbb{Z}^k \) defined by substitution of integers for the variables; and likewise for a \(k \)-tuple of integer-valued polynomials \((f_1, \ldots, f_k) \in (\text{Int}(\mathbb{Z}^n))^k \), where

\[
\text{Int}(\mathbb{Z}^n) = \{ g \in \mathbb{Q}[x_1, \ldots, x_n] \mid \forall a \in \mathbb{Z}^n : g(a) \in \mathbb{Z} \}.
\]

If \(S \subseteq \mathbb{Z}^k \) is the range of \(f = (f_1, \ldots, f_k) \), we say that \(f \) parametrizes \(S \).

We want to compare two kinds of polynomial parametrization of sets of integers or \(k \)-tuples of integers: by integer-valued polynomials and by polynomials with integer coefficients. Consider for instance the set of integer Pythagorean triples: it takes two triples of polynomials with integer coefficients, \((c(a^2 - b^2), 2cab, c(a^2 + b^2))\) and \((2cab, c(a^2 - b^2), c(a^2 + b^2))\) to parametrize the set of integer triples \((x, y, z)\)

\[2000\ Mathematics\ Subject\ Classification.\ Primary\ 11D85;\ Secondary\ 11C08,\ 13F20.

\textbf{Key words and phrases.} polynomial parametrization, integer-valued polynomial, range, image of a polynomial, polynomial mapping.

This note was written while the author was enjoying hospitality at Université de Picardie, Amiens.
satisfying \(x^2 + y^2 = z^2 \), but the same set can be parametrized by a single triple of integer-valued polynomials [2]. Another reason for studying parametrization by integer-valued polynomials are various sets of integers in number theory and combinatorics that come parametrized by integer-valued polynomials in a natural way, for example, the polygonal numbers

\[
p(n, k) = \frac{(n - 2)k^2 - (n - 4)k}{2}
\]

where \(p(n, k) \) represents the \(k \)-th \(n \)-gonal number [3].

Now for our comparison of different kinds of polynomial parametrization of sets of integer points.

Theorem. For a set\(^1\) \(S \subseteq \mathbb{Z}^k \) consider the conditions:

(A) \(S \) is parametrizable by a \(k \)-tuple of polynomials with integer coefficients, i.e., there exists \(f = (f_1, \ldots, f_k) \) in \((\mathbb{Z}[x_1, \ldots, x_n])^k\) (for some \(n \)) such that \(S = f(\mathbb{Z}^n) \).

(B) \(S \) is parametrizable by a \(k \)-tuple of integer-valued polynomials, i.e., there exists \(g = (g_1, \ldots, g_k) \) in \((\text{Int}(\mathbb{Z}^m))^k\) (for some \(m \)) such that \(S = g(\mathbb{Z}^m) \).

(C) \(S \) is a finite union of sets, each parametrizable by a \(k \)-tuple of polynomials with integer coefficients.

(D) \(S \) is the set of integer \(k \)-tuples in the range of a \(k \)-tuple of polynomials with rational coefficients, as the variables range through the integers, i.e., there exists \(h = (h_1, \ldots, h_k) \) in \((\mathbb{Q}[x_1, \ldots, x_r])^k\) (for some \(r \)) such that \(S = h(\mathbb{Z}^r) \cap \mathbb{Z}^k \).

Then the following implications hold:

\[
\begin{align*}
A & \\
\Downarrow & \\
B & \iff D \\
\Downarrow & \\
C
\end{align*}
\]

and \(C \not\Rightarrow B, B \not\Rightarrow A \).

Of the implications in the theorem, \(A \Rightarrow B \) and \(B \Rightarrow D \) are trivial. We now show the nontrivial ones.

For \(D \iff B \), we first construct, for any \(f \in \mathbb{Q}[x_1, \ldots, x_n] \), a parametrization of \(f^{-1}(\mathbb{Z}) \) by polynomials with integer coefficients, which we then plug into \(f \) to obtain an integer-valued polynomial.

\(^1\)Correction after publication: we need \(S \neq \emptyset \). Thanks to Youssef Fares for pointing this out.
Lemma 1. If q_1, \ldots, q_r are powers of different primes and for each i, S_i is a union of residue classes of $q_i \mathbb{Z}^k$ in \mathbb{Z}^k, then $\bigcap_{i=1}^r S_i \subseteq \mathbb{Z}^k$ is parametrizable by a k-tuple of polynomials with integer coefficients.

Proof. We will first parametrize a union of residue classes of $q \mathbb{Z}^k$ in \mathbb{Z}^k for a single prime power q. Let $a_0, \ldots, a_s \in \mathbb{Z}^k$ be representatives of the residue classes in question, and let t such that $2^t > s$. Expressing $t \in \{0, 1, \ldots, s\}$ in base 2, we obtain a sequence of digits $[l]_2 = (e^{(l)}_0, \ldots, e^{(l)}_i)$. Let m be a natural number such that z^m is either congruent to 0 or to 1 mod q for every integer z. Then

$$(qy_1, \ldots, qy_k) + \sum_{l=0}^s a_l \prod_{i=0}^{t-1} e^{(l)}_i(x_i) \quad \text{with} \quad e^{(l)}_i(x_i) = \begin{cases} x_i^m & \text{if } e^{(l)}_i = 1 \\ 1 - x_i^m & \text{if } e^{(l)}_i = 0 \end{cases}$$

parametrizes $\bigcup_{l=0}^s (q \mathbb{Z}^k + a_l)$.

Now let q_1, \ldots, q_r be powers of different primes, and for $1 \leq i \leq r$ let S_i be a union of residue classes mod $q_i \mathbb{Z}^k$ parametrized by a k-tuple of polynomials g_i. By Chinese remainder theorem there are c_1, \ldots, c_r with $c_i \equiv 1 \mod q_i$ and $c_i \equiv 0 \mod q_j$ for $j \neq i$. We may choose c_1, \ldots, c_r with gcd(c_1, \ldots, c_r) = 1. (E.g. by applying Dirichlet’s theorem on primes in arithmetic progressions to find primes $p_i \in b_i + q_i \mathbb{Z}$, where b_i is the inverse of $\prod_{j \neq i} q_j$ mod q_i, and setting $c_i = p_i \prod_{j \neq i} q_j$, with p_1, \ldots, p_r different primes coprime to all q_j.) Finally, we set $h = \sum_{i=1}^r c_i g_i$. Then h parametrizes $\bigcap_{i=1}^r S_i$. □

Lemma 2 (B \iff D). Let $S \subseteq \mathbb{Z}^k$. Then there exists a k-tuple of integer-valued polynomials whose range is S if and only if there exists a k-tuple of polynomials with rational coefficients such that S is the set of integer points in its range (as the variables range through the integers).

Proof. The “only if” direction (that’s B \Rightarrow D) is trivial. For the other direction, D \Rightarrow B, first consider the case $k = 1$ of a single rational polynomial $f(x_1, \ldots, x_n) = g(x_1, \ldots, x_n)/c$ with $g(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$ and $c \in \mathbb{N}$.

Let $T = \{a \in \mathbb{Z}^n \mid f(a) \in \mathbb{Z}\}$. If $c = q_1 \cdots q_r$ is the factorization of c into prime powers and $T_i = \{a \in \mathbb{Z}^n \mid g(a) \in q_i \mathbb{Z}\}$, then $T = \bigcap_{i=1}^r T_i$. For each i, T_i is a union of residue classes of $q_i \mathbb{Z}^n$. Hence T is parametrizable by an n-tuple of polynomials $(h_1, \ldots, h_n) \in \mathbb{Z}[x]^n$. Substituting h_i for x_i in f, we obtain an integer-valued polynomial $p(x) = f(h_1(x), \ldots, h_n(x))$ whose range is exactly the set of integers in the range of f.

In the case $k > 1$, the argument for the set of integer points in the range of a k-tuple of rational polynomials (f_1, \ldots, f_k), with $f_j(x_1, \ldots, x_n) = g_j(x_1, \ldots, x_n)/c$, is similar, using $T_i = \{a \in \mathbb{Z}^n \mid \forall j: g_j(a) \in q_i \mathbb{Z}\}$. □

Correction after publication: we need $s = 2^t - 1$. Thanks to Arnaud Bodin for pointing this out. No problem, we just repeat some of the a_i.
Lemma 3 (B ⇒ C). If a set $S \subseteq \mathbb{Z}^k$ is parametrizable by a single k-tuple of integer-valued polynomials, it is parametrizable by a finite number of k-tuples of polynomials with integer coefficients.

Proof. First consider an integer-valued polynomial $f(x)$ in one variable of degree d. Recall that the binomial polynomials $(\binom{x}{n}) = \frac{x(x-1)\ldots(x-n+1)}{n!}$ form a basis of the \mathbb{Z}-module Int(\mathbb{Z}), so that there exist integers a_0, \ldots, a_d with $f = \sum_{n=0}^d a_n \binom{x}{n}$.

It is easy to see that $(\binom{cy+j}{n}) \in \mathbb{Z}[y]$ for any j whenever c is a common multiple of $1, 2, \ldots, n$. Therefore for $c = \text{lcm}(1, 2, \ldots, d)$ and arbitrary j,

$$f_j(y) = f(cy+j) = \sum_{n=0}^d a_n \binom{cy+j}{n}$$

is in $\mathbb{Z}[y]$; and clearly the image of f is the union of the images of f_j, for $j = 0, \ldots, c-1$.

Regarding integer-valued polynomials in several variables, products of binomial polynomials in one variable each $\prod_{i=1}^n \binom{x_i}{m_i}$ form a basis of Int(\mathbb{Z}^n) [1, Prop. XI.1.12]. So, if $f \in \text{Int}(\mathbb{Z}^n)$ is of degree d_i in x_i, and c_i is a common multiple of $1, 2, \ldots, d_i$ then for each choice of j_1, \ldots, j_n, $f_{j_1,\ldots,j_n} = f(c_1y_1+j_1, \ldots, c_n y_n+j_n)$, as a \mathbb{Z}-linear combination of polynomials $\prod_{i=1}^n \binom{c_iy_i+j_i}{m_i}$, is a polynomial with integer coefficients and the image of f is the union of the images of the polynomials f_{j_1,\ldots,j_n} with $0 \leq j_m < c_m$.

The same argument shows that the image of a vector of polynomials (g_1, \ldots, g_k) in (Int(\mathbb{Z}^n))k is the union of the images of $c_1 \cdot \ldots \cdot c_n$ vectors of polynomials in $(\mathbb{Z}[y_1, \ldots, y_n])^k$, where $c_i = \text{lcm}(1, 2, \ldots, d_i)$, d_i denoting the highest degree of any g_m in the i-th variable. \hfill \Box

Remark. B \n⇒ A and C \n⇒ B: Finite sets of more than one element witness C \n⇒ B. The set of integer Pythagorean triples mentioned above is parametrizable by a single triple of polynomials in Int(\mathbb{Z}^4), but not by any triple of polynomials with integer coefficients in any number of variables [2] therefore B \n⇒ A.

This completes the proof of the theorem. The remainder of this note is devoted to the fact that every co-finite set is parametrizable by a single vector of polynomials with integer coefficients. (I was asked by Leonid Vaserstein in connection with a remark in [4] to publish a proof of this.)

Proposition. Let $S \subseteq \mathbb{Z}^k$ such that $\mathbb{Z}^k \setminus S$ is finite. Then there exists a k-tuple of polynomials with integer coefficients whose range is S.

Proof. We may suppose that the complement of S in \mathbb{Z}^k is contained in a cuboid $\prod_{i=1}^k [0,n_i] = [0,n_1] \times \ldots \times [0,n_k]$, with n_i a non-negative integer for $1 \leq i \leq k$. We will first construct a polynomial vector whose image is $\mathbb{Z}^k \setminus \prod_{i=1}^k [0,n_i]$, by induction on k.

$k = 1$: for $n \geq 0$, the range of the polynomial f below is $\mathbb{Z} \setminus [0, n]$:

$$f = -x_2^2(x_1^2 + x_2^2 + x_3^2 + x_4^2 + 1) + (1 - x_3^2)(x_1^2 + x_2^2 + x_3^2 + x_4^2 + n + 1).$$

Once we have a polynomial vector (f_1, \ldots, f_{k-1}) parametrizing $\mathbb{Z}^{k-1} \setminus \prod_{i=1}^{k-1} [0, n_i]$ and a polynomial f with range $\mathbb{Z} \setminus [0, n_k]$, we set

$$g_i = (1 + x_i^2)(1 - z^2)^{2m}f_i + z^2x_i \quad (1 \leq i < k)$$

and

$$g_k = (1 + y^2)z^{2m}f + (1 - z^2)y$$

with m sufficiently large, see below, and check that the range of (g_1, \ldots, g_k) is $\mathbb{Z}^k \setminus \prod_{i=1}^{k} [0, n_i]$: For $z = x_1 = \ldots = x_{k-1} = 0$ we get $(f_1, \ldots, f_{k-1}, y)$, while for $z \in \{1, -1\}$ and $y = 0$, we have $(x_1, \ldots, x_{k-1}, f)$, so that (g_1, \ldots, g_k) certainly covers the desired range.

Also, we stay within the desired range. Indeed, for $z = 0$, the first $k - 1$ coordinates become $(1 + x_i^2)f_i$, and their image lies within the image of (f_1, \ldots, f_{k-1}), and for $z \in \{1, -1\}$ the last coordinate is $(1 + y^2)f$, whose image is contained in the image of f.

Let $n = \max_i \{n_i\}$. By choosing m sufficiently large such that

$$|(1 + x^2)(1 - z^2)^{2m}| > |z^2x| + n \quad \text{and} \quad |(1 + y^2)z^{2m}| > |(1 - z^2)y| + n$$

for all z with $|z| \geq 2$ and all values of x and y, we make sure that (g_1, \ldots, g_k) stays within the desired range also for $|z| \geq 2$.

Having constructed a polynomial vector with range $\mathbb{Z}^k \setminus \prod_{i=1}^{k} [0, n_i]$, we can add additional values to the range, one by one, as follows.

If $g = (g_1, \ldots, g_k)$ is a polynomial vector whose image contains $\mathbb{Z}^k \setminus \prod_{i=1}^{k} [0, n_i]$, but does not contain $0 \in \mathbb{Z}^k$, and c is in $\prod_{i=1}^{k} [0, n_i]$, let

$$h = w^{2t}g + (1 - w^2)c,$$

with t such that $2^{2t-2} > \max_i \{n_i\}$ then the range of h is exactly the range of g together with the (possibly additional) value c. If the value $c = 0 \in \mathbb{Z}^k$ is to be added to the range of g, it must be added last. □

References

Institut für Mathematik A, Technische Universität Graz, A-8010 Graz, Austria

frisch@tugraz.at