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POLYNOMIAL FUNCTIONS

ON

FINITE COMMUTATIVE RINGS

Sophie Frisch

Abstract. ‡ Every function on a finite residue class ring D/I of a Dedekind

domain D is induced by an integer-valued polynomial on D that preserves con-

gruences mod I if and only if I is a power of a prime ideal. If R is a finite

commutative local ring with maximal ideal P of nilpotency N satisfying for all

a, b∈R, if ab∈ Pn then a∈ P k , b∈ P j with k+ j ≥min(n,N), we determine the

number of functions (as well as the number of permutations) on R arising from

polynomials in R[x]. For a finite commutative local ring whose maximal ideal is

of nilpotency 2, we also determine the structure of the semigroup of functions and

of the group of permutations induced on R by polynomials in R[x].

Introduction

Let R be a finite commutative ring with identity. Every polynomial f∈R[x] defines

a function on R by substitution of the variable. Not every function ϕ:R → R is

induced by a polynomial in R[x], however, unless R is a finite field. (Indeed,

if the function with ϕ(0) = 0 and ϕ(r) = 1 for r ∈ R \ {0} is represented by

f ∈ R[x], then f(x) = a1x + . . . + anx
n and for every non-zero r ∈ R we have

1 = f(r) = (a1 + . . .+ anr
n−1)r, which shows r to be invertible.)

This prompts the question how many functions on R are representable by

polynomials in R[x]; and also, in the case that R=D/I is a residue class ring of a

domain D with quotient field K , whether every function on R might be induced

by a polynomial in K[x]? We will address these questions in sections 2 and 1,

respectively.
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Other related problems are to characterize the functions on R arising from

polynomials in R[x] by intrinsic properties of these functions (such as preservation

of certain relations), and to determine the structure of the semigroup of polynomial

functions on R and that of the group of polynomial permutations of R. In section

4, we will answer the second question in the special case that R is a local ring

whose maximal ideal is of nilpotency 2.

Apart from that, the only result I am aware of is Nöbauer’s expression of the

group of polynomial permutations on Zpn as a wreath product G≀Sp , with G a

rather inscrutable subgroup (characterized by conditions on the coefficients of the

representing polynomials) of the group of polynomial permutations on Zpn−1 [11].

(There is a wealth of literature on the functions induced by polynomials on finite

fields, some of it concerning the structure of the subgroup of Sq generated by

special polynomials, see e.g. [8] and its references. Methods from the theory of

finite fields do not help much with finite rings, however, except when the rings are

algebras over a finite field, see [2].)

A characterization of polynomial functions by preservation of relations has been

given for R= Zn by Kempner [6]. For finite commutative rings in general there is

the criterion of Spira [17] that a function is representable by a polynomial if and

only if all the iterated divided differences that can be formed by subsets of the

arguments and the respective values are in R.

In what follows, all rings are assumed to be commutative with identity, the

natural numbers are written as N = {1, 2, 3, . . .}, and the non-negative integers

as N0 = {0, 1, 2, . . .}.

1. Functions induced on residue class rings by integer-valued polynomials

In this section we give the answer, for Dedekind rings, to a question asked by

Narkiewicz in his “Polynomial Mappings” book [9]. For R = Z, the ‘if’ direction

has been shown (for several variables, cf. the corollary) by Skolem [16], the ‘only

if’ direction by Rédei and Szele [12, 13].

If D is a domain with quotient field K , a polynomial f ∈ K[x] is called

integer-valued on D if f(d) ∈ D for all d ∈ D. We write Int(D) for the set of all

integer-valued polynomials on D. If I is an ideal of a domain D, we say that a

polynomial f ∈ Int(D) induces a function ϕ:D/I → D/I if ϕ(d+ I) = f(d) + I is

well defined, i.e., if c ≡ d mod I implies f(c) ≡ f(d) mod I .

Theorem 1. Let R be a Dedekind domain and I an ideal of R of finite index.

Every function ϕ:R/I → R/I is induced by a polynomial f ∈ Int(R) if and only

if I is a power of a prime ideal of R.

Proof. The case of a finite field or of I=R=P 0 is trivial, so we consider R infinite
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and I 6= R. Let P be a prime ideal with I ⊆ P . Assume that the characteristic

function of {0} on R/I is induced by a polynomial f ∈ Int(R), then f(r)≡ 1 mod

I for r ∈ I and f(r) ≡ 0 mod I for r 6∈ I . We show that I must be a power of P .

Suppose otherwise, then Pn 6⊆ I for all n ∈ N. Let c ∈ R and g ∈ R[x] such that

f(x) = g(x)/c, and n = vP (c).

Since g is in R[x], the function r 7→ g(r) on R preserves congruences mod

every ideal of R, in particular mod Pn+1 . It follows that r≡ s mod Pn+1 implies

f(r)≡f(s) mod P . Now consider an element r∈Pn+1\I . On one hand, f(r) 6∈P ,

since f(r) ≡ f(0) mod P and f(0) ≡ 1 mod I ; on the other hand, since r 6∈ I , we

have f(r) ∈ I ⊆ P , a contradiction.

To show that every function on R/Pn (P a prime ideal of finite index) is

induced by a polynomial in Int(R), it suffices to show this for the charcteristic

function of {0} on the residue class ring. For this, we need only construct a

polynomial f ∈ Int(R) satisfying f(r) ∈ P for r 6∈ Pn and f(r) 6∈ P for r ∈ Pn ;

an appropriate power f̃(x) = f(x)m will then satisfy f̃(r) ∈ Pn for r 6∈ Pn and

f̃(r) ≡ 1 mod Pn for r ∈ Pn .

Let a1, . . . , aqn−1 ∈ R be a system of representatives of the residue classes of

Pn other than Pn itself, and let a0 ∈ Pn−1 \ Pn . Put h(x) =
∏qn−1

k=0 (x − ak)

and α =
∑n

j=1

[

qn

qj

]

= qn−1
q−1 , then for all r ∈ Pn we have vP (h(r)) = α− 1, while

vP (h(r)) ≥ α for all r ∈ R \ Pn .

Now let Q = {Q ∈ Spec(R) | Q 6= P ; ∃k ak ∈ Q} and for Q ∈ Q define

mQ = max{m ∈ N | ∃k ak ∈ Qm}. Pick c ∈ R such that c 6∈ P and c ∈ QmQ+1 for

all Q ∈ Q, and set bk = c−1ak and g(x) =
∏qn−1

k=0 (x− bk).

We now set f(x) = g(x)/g(0) and claim that f ∈ Int(R) and that for all r ∈R,

f(r) ∈ P if and only if r 6∈ Pn . To verify this, we check that for all Q ∈ Spec(R)

and all r ∈ R, vQ(g(r)) ≥ vQ(g(0)) and that vP (g(r)) > vP (g(0)) for r ∈ R \ Pn ,

while vP (g(r)) = vP (g(0)) for r ∈ Pn .

First consider those Q ∈ Spec(R) with vQ(c) > 0. We have vQ(bk) < 0 for all

k and therefore vQ(g(r)) =
∑qn−1

k=0 vQ(bk) = vQ(g(0)) for all r ∈ R.

Now consider a Q ∈ Spec(R) with vQ(c) = 0 and Q 6= P , then vQ(bk) = 0 for

all k, and for all r ∈ R we have vQ(g(r)) ≥ 0 = vQ(g(0)).

Concerning P , we observe that vP (r − bk) = vP (c−1(cr − ak)) = vP (cr − ak),

such that vP (g(r)) = vP (h(cr)). Since vP (cr) = vP (r), this implies vP (g(r)) ≥ α

for r ∈ R \ Pn and vP (g(r)) = α− 1 for r ∈ Pn . �

If K is the quotient field of a domain D and I an ideal of D, we say that

f ∈K[x1, . . . , xm] induces a function ϕ: (D/I )
m → D/I if ϕ(d1 + I, . . . , dm + I) =

f(d1, . . . , dm) + I makes sense, i.e., if f(d1, . . . , dm) ∈D for all (d1, . . . , dm) ∈Dm

and f(d′1, . . . , d
′
m) ≡ f(d1, . . . , dm) mod I whenever d′i ≡ di mod I for 1 ≤ i ≤m.
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Corollary. If R is a Dedekind domain, P a maximal ideal of finite index and

n ∈ N then every function f : (R/Pn)m → R/Pn is induced by a polynomial

f ∈K[x1, . . . , xm] (K being the quotient field of R).

Proof. It suffices to have a polynomial f ∈ K[x1, . . . , xm] that induces the char-

acteristic function of (0, 0, . . . , 0) mod Pn . As R/P is a field, there exists a

g ∈ R[x1, . . . , xm] such that g(r1, . . . , rm) ≡ 1 mod P if ri ∈ P for 1 ≤ i ≤ m

and g(r1, . . . , rm) ≡ 0 mod P otherwise. By the Theorem, there exists h ∈ Int(R)

such that h(r) ∈ P if r ∈ Pn and h(r) 6∈ P otherwise. Now f(x1, . . . , xm) =

g(h(x1), . . . , h(xm)) satisfies f(r1, . . . , rm) 6∈ P iff ri ∈ Pn for 1 ≤ i ≤ m, and a

suitable power of g(x) = f(x)k finally satisfies g(r1, . . . , rm)≡ 1 mod Pn if ri ∈P
n

for 1 ≤ i ≤m and g(r1, . . . , rm) ≡ 0 mod Pn otherwise, as required. �

Note that the theorem and its proof still hold if we replace Dedekind ring

by Krull ring, prime ideal by height 1 prime ideal, and restrict I to ideals with

div(I) 6= R.

2. The number formulas

For a commutative finite ring R, let us denote by F(R) the set (or semigroup

with respect to composition) of functions on R induced by polynomials in R[x],

and by P(R) the subset (or group) of those polynomial functions on R that are

permutations.

When considering the functions induced on a finite commutative ring R by

polynomials in R[x], we can restrict ourselves to local rings, since every finite

commutative ring is a direct sum of local rings, and addition and multiplication

(and therefore evaluation of polynomials in R[x]) are performed in each component

independently.

For residue class rings of the integers, we know

|F(Zpn)| = p
∑n

k=1
βp(k) and |P(Zpn)| = p!pp(p− 1)pp

∑n
k=3

βp(k),

where p is a prime and βp(k) is the minimal m ∈ N such that pk
∣

∣ m! (in other

words, the minimal m ∈ N such that αp(m) ≥ k, with αp(m) =
∑

j≥1

[

m
pj

]

).

The most lucid proof, in my opinion, of these two formulas is that by Keller

and Olson [5], to whom the second one is due. Kempner’s earlier proof [6] of the

formula for |F(Zpn)| is rather more involved. Singmaster [15] and Wiesenbauer

[18] gave proofs for R = Zm which do not use reduction to the local ring case.

Brawley and Mullen [3] generalized the formulas to Galois rings (rings of the form

Z[x]/(pn, f), where p is prime and f ∈ Z[x] is irreducible over Zp , see [7]) and

Nečaev [10] to finite commutative local principal ideal rings.
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We will give a proof along the lines of Keller and Olson of a generalization

of the formulas to a class of local rings (the suitable rings defined below) that

properly contains the rings considered by Brawley, Mullen and Nečaev.

Definition. Let R be a finite commutative local ring R with maximal ideal P

and N ∈ N minimal with PN = (0). We call R “suitable”, if for all a, b ∈ R and

all n ∈ N,

ab ∈ Pn =⇒ a ∈ P k and b ∈ P j with k + j ≥ min(N,n).

Note that every finite local ring R with maximal ideal P such that P 2 = (0)

is suitable, as well as every finite local ring whose maximal ideal is principal.

We may think of this property as inducing a valuation-like mapping v:R→HN ,

by v(r) = k if r ∈ P k \ P k+1 and v(0) = ∞, where (HN ,+) results from the

non-negative integers by identifying all numbers greater or equal N ; it is the

semigroup with elements {0, 1, . . . , N − 1, N = ∞} and i + j = min(i + j,N),

where the operations on the right are just the usual ones on non-negative integers.

Definition. If R is a finite local ring and P its maximal ideal, for n ≥ 0, let

α(n) = α(R,P )(n) =
∑

j≥1

[

n

[R : P j ]

]

and let β(n) = β(R,P )(n) be the minimal m ∈ N such that α(R,P )(m) ≥ n. (If R

and P are understood, we suppress the subscript (R,P ) of α and β .)

Remark. Note that α(R,P )(n) is finite if and only if n < |R|; we will never use

α(R,P ) outside that range. Also note that, since [R/P k : P j/P k] = [R : P j ] for

j ≤ k, we have α(R,P )(n) = α(R/P k,P/P k)(n) in the range where both values are

finite, that is for n < [R : P k].

Theorem 2. Let R be a suitable finite local ring with maximal ideal P , q=[R:P ],

and N ∈ N minimal, such that PN = (0). Then

|F(R)| =

β(N)−1
∏

j=0

[R : PN−α(j)],

where α(n) =
∑

j≥1

[

n
[R:P j ]

]

and β(n) is the minimal m ∈ N such that α(m) ≥ n.

Also, for N > 1,

|P(R)| =
q! (q − 1)q

q2q |F(R)| .
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If [P k−1 : P k] = q for 1 ≤ k ≤ N , the formulas simplify to

|F(R)| = q
∑N

k=1
βq(k) and |P(R)| = q!qq(q − 1)q q

∑N
k=3

βq(k),

where αq(m) =
∑

j≥1

[

m
qj

]

and βq(k) is the minimal m ∈ N such that αq(m) ≥ k.

We will prove the expression for |F(R)| at the end of the next section, and

that for |P(R)| at the end of section 4.

3. A canonical form for the polynomial repesenting a function.

Definition. Let R be a commutative finite local ring with maximal ideal P of

nilpotency N . We call a sequence (ak)∞k=0 of elements in R a P -sequence, if for

0 ≤ n ≤ N

ak − aj ∈ P
n ⇐⇒ [R : Pn]

∣

∣ k − j;

and if (ak) is a P -sequence, we call the polynomials

〈x〉0 = 1 and 〈x〉n = (x− a0) . . . (x− an−1) for n > 0

the “falling factorials” constructed from the sequence (ak).

A P -sequence (ak) for R is easy to construct inductively: Let a0, . . . , a[R:P ]−1

be a complete set of residues mod P with a0 = 0. Once ak has been defined for

k < [R : Pn−1] (while n ≤ N ), define ak for [R : Pn−1] ≤ k < [R : Pn] as follows:

let b0 = 0, b1 , . . . , b[P n−1:P n]−1 be a complete set of residues of Pn−1 mod Pn ;

then, for k = j[R : Pn−1] + r with 0 ≤ r < [R : Pn−1] and 1 ≤ j < [Pn−1 : Pn],

let ak = bj + ar . After a0, . . . , a|R|−1 have been defined (necessarily a complete

enumeration of the elements of R), continue the sequence |R|-periodically.

In the following Lemma, we use the convention that P∞ = (0).

Lemma. Let R be a suitable finite local ring with maximal ideal P of nilpotency

N , and 〈x〉n the falling factorial of degree n constructed from a P -sequence (ak).

Then for all n ∈ N0 ,

∀r ∈ R 〈r〉n ∈ Pα(n) and if α(n) < N then 〈an〉n 6∈ Pα(n)+1.

Proof. If n ≥ |R| (equivalent to α(n) = ∞) then, since a0, . . . , a|R|−1 enumerate

all elements of R, 〈r〉n = 0 for all r.
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If n < |R| then α(n) =
∑N

k=1

[

n
[R:P k]

]

, while 〈r〉n ∈ P e , where e =

N−1
∑

k=1

k
∣

∣{j | 0 ≤ j < n; r − aj ∈ P
k \ P k+1}

∣

∣ +N
∣

∣{j | 0 ≤ j < n; r − aj ∈ P
N}

∣

∣

=

N
∑

k=1

∣

∣{j | 0 ≤ j < n; r − aj ∈ P
k}

∣

∣

and (by definition of suitable) 〈r〉n is in no higher power of P if e < N .

From the definition of P -sequence, we see that
∣

∣{j | 0 ≤ j < n; r − aj ∈ P
k}

∣

∣

is either
[

n
[R:P k]

]

or
[

n
[R:P k]

]

+ 1 and the +1 doesn’t occur for r = an . �

Proposition 1. Let R be a suitable finite local ring with maximal ideal P of

nilpotency N , (ak) a P -sequence for R, 〈x〉k the falling factorial of degree k

constructed from it and let 0 ≤ n ≤ N .

A polynomial f ∈ R[x] induces the zero-function on R/Pn if and only if

f(x) =
∑

j≥0

cj〈x〉j with cj ∈ P
n−α(j) for 0 ≤ j < β(n).

Proof. As 〈x〉j maps R into Pα(j) , the “if” direction is evident. To show “only

if”, assume that f(x) =
∑

j≥0 cj〈x〉j maps R into Pn . We show cj ∈ Pn−α(j)

for 0 ≤ j < β(n) by induction on j . (There is no condition on the coefficients for

j ≥ β(n), since 〈x〉j already maps R into Pn for those j .)

For j = 0, we have c0 = f(a0) ∈ Pn . Now assume ci ∈ Pn−α(i) for i < j

and consider f(aj). Since 〈x〉i maps R into Pα(i) and 〈aj〉k = 0 for k > j , we

have f(aj) ≡ cj〈aj〉j mod Pn . Also, 〈aj〉j is in no higher power of P than Pα(j) .

Therefore f(aj) ∈ P
n implies cj ∈ P

n−α(j) . �

Corollary 1. In the situation of the Proposition, for 0 ≤ j < β(n), let Cj be a

complete set of residues mod Pn−α(j) . Then every function on R/Pn arising from

a polynomial in R[x] arises from a unique polynomial of the form

f(x) =

β(n)−1
∑

j=0

cj〈x〉j with cj ∈ Cj .

For R = Zpn , other canonical forms for the functions representable by poly-

nomials have been given by Dueball [4], Aizenberg, Semion and Tsitkin [1] and

Rosenberg [14] (the latter for polynomials in several variables).

7



polynomial functions on finite rings

Corollary 2. In the situation of the Proposition, if n > 0 then for every function

induced on the residue classes of Pn−1 by a polynomial in R[x], there are exactly

β(n)−1
∏

j=0

[Pn−α(j)−1 : Pn−α(j)]

different polynomial functions on the residue classes of Pn that reduce to the given

function mod Pn−1 . If [P k−1 :P k] = q for 1≤ k≤N then the expression simplifies

to qβq(n) , where βq(n) is the minimal m ∈ N such that αq(m) =
∑

j≥1

[

n
qj

]

≥ n.

Proof of the formula for |F(R)| in Theorem 2: That |F(R)|=
∏β(N)−1

j=0 [R:PN−α(j)]

follows immediately from Corollary 1 with n = N . In the special case that

[P k−1 :P k] = q for 1 ≤ k ≤N , writing sk for the number of different functions on

R/P k arising from polynomials in R[x], we see from Corollary 2 that qβq(k)sk−1 =

sk . Therefore q
∑

N

k=1
β(k) = sN = |F(R)| in that case. �

4. The group P(R/P 2)

We want to determine the structure of the group P(R/P 2) with respect to com-

position of functions, R being a suitable finite local ring as above. To simplify

notation, we consider the group P(R), where R is a finite local ring with maximal

ideal P of nilpotency N = 2.

Some notational conventions: We write the group of invertible elements of a

monoid M as M∗ . If M is a monoid and H a monoid acting on a set S then the

wreath product M ≀H is the monoid defined on the set H ×MS by the operation

(h, (ms)s∈S)(g, (ls)s∈S) = (hg, (mg(s)ls)s∈S).

If M acts on a set T then the standard action of M ≀H on S × T is

(h, (ms)s∈S)(x, y) = (h(x),mx(y)).

Note that an element (h, (ms)s∈S) is in (M ≀H)∗ if and only if h∈H∗ and ms∈M
∗

for all s ∈ S , and that therefore (M ≀H)∗ ≃M∗ ≀H∗ .

If D is a commutative ring and M a D-module, we write AD(M) for the

semigroup with respect to compostion of transformations of M of the form x 7→

ax+ b with a ∈ D and b ∈M . We have |AD(M)| = |D/Ann(M) ×M |.
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Proposition 2. Let R be a finite local ring with maximal ideal P of nilpotency 2

and q= [R :P ]. Denote by QQ the semigroup of functions from a set of q elements

to itself. Then

F(R) ≃ AR/P (P )≀QQ and P(R) ≃ A
∗
R/P (P )≀Sq,

and in particular,

|F(R)| = qq |R|q and |P(R)| = q! (q − 1)q |P |q.

Proof. Fix a system of representatives Q of R mod P . We identify R with Q×P

by r 7→ (s, t) with s ∈ Q, t ∈ P , such that r = s+ t. Let f ∈ R[x]. We have

f(r) = f(s+ t) = f(s) + f ′(s)t,

since this holds mod P 2 by Taylor’s Theorem and P 2 = (0) in R. Now let ϕ(s)

be the representative in Q of f(s) + P , then

f(s+ t) = ϕ(s) + (f(s) − ϕ(s)) + f ′(s)t,

with ϕ(s) ∈Q and f(s)−ϕ(s) ∈ P . We regard f ′(s) as being in R/P . (As it gets

multiplied by t ∈ P , only its residue class mod P matters).

If we associate to f ∈ R[x] the functions ϕf :Q → Q and ψf :Q → AR/P (P ),

where

• ϕf (s) is the representative in Q of f(s) + P

• ψf (s) is the transformation x 7→ af (s)x+ bf (s) on P , where

• af (s) ∈ R/P is f ′(s) mod P ,

• bf (s) = f(s) − ϕ(s) ∈ P

then ϕf and ψf completely determine the function induced by f on R.

Moreover, the function defined on Q×P by ϕ ∈QQ , a ∈ (R/P )Q and b ∈ PQ

via (s, t) 7→ ϕ(s) + a(s)t + b(s) determines ϕ, a and b uniquely, such that for

f, g ∈ R[x] inducing the same function on R we have ϕg = ϕf and ψg = ψf .

Therefore f 7→ (ϕf , ψf ) depends only on the function induced by f ∈ R[x] on R

and defines a homomorphism from F(R) to AR/P (P )≀QQ , which takes the action

of F(R) on R (identified with Q × P ) to the standard action of A≀QQ arising

from the obvious actions of A on P and of QQ on Q. We have already seen that

this homomorphism is injective.

To check surjectivity, we show that every triple of functions ϕ:Q→Q, b:Q→P

and a:Q→ R/P actually occurs as ϕf , af and bf for some f ∈ R[x].

Every pair of functions on R/P arises as f mod P and f ′ mod P for some

polynomial f ∈ R[x], because R/P is a finite field. This takes care of ϕf and
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af . Since the characteristic function of every residue class of P is induced by a

polynomial in R[x] (just take a sufficiently high power of a polynomial representing

it mod P ), we can adjust f to take prescribed values on the s∈Q, by adding a P -

linear combination of these characteristic functions. This produces a prescribed bf
without disturbing the values of f and f ′ mod P , since we only add a polynomial

in P [x].

If we restrict to polynomials representing permutations or, equivalently, to

polynomials for which ϕf is a permutation of Q and af (s) 6= 0 + P for all s ∈ Q,

we get an isomorphism of P(R) and A
∗
R/P (P )≀Sq , which takes the action of P(R)

on R (identified with Q × P ) to the standard action of the wreath product on

Q×P arising from the obvious actions of A
∗
R/P on P and of the symmetric group

Sq on Q. �

Remark. We may simplify the expression for P(R) by noting that AR/P (P ) is

isomorphic to the semi-direct product ((R/P )∗, ·)⋉(P,+) with (R/P )∗ acting on

(P,+) through the scalar mulutiplication of the R/P -vectorspace structure on P .

Proof of the formula for |P(R)| in Theorem 2: For n ≤ N , let sn denote the

number of functions on the residue classes of Pn induced by polynomials in R[x]

and tn the number of them that are permutations.

If n≥ 2, a polynomial induces a permutation mod Pn if and only if it induces a

permutation mod P and its derivative is nowhere zero mod P , cf. [7]. In particular,

if n > 2, a polynomial induces a permutation mod Pn if and only if it induces

one mod Pn−1 . Together with the fact that every class of polynomial functions

mod Pn reducing to the same function mod Pn−1 contains the same number of

elements (Corollary 2 of Proposition 1), this implies that tn

tn−1

= sn

sn−1

for all n> 2,

and therefore tn = t2
s2

sn for all n ≥ 2.

From Proposition 2 applied to R/P 2 we get t2 = q!(q − 1)q[P : P 2]q and

s2 = qq[R : P 2]q and the formula for |P(R)| follows. �
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