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NULLSTELLENSATZ AND SKOLEM PROPERTIES

FOR INTEGER-VALUED POLYNOMIALS

Sophie Frisch

Abstract. Skolem and Nullstellensatz properties are analogues of the weak

Nullstellensatz and Hilbert’s Nullstellensatz, respectively, for the ring of integer-

valued polynomials in several indeterminates Int(Dn) = {f ∈ K[x1, . . . , xn] |

f(Dn) ⊆ D}, where D is a domain and K its quotient field. We show their

equivalence when D is a Noetherian domain and extend the criterion of Brizolis

and Chabert for Int(Dn) to have the Nullstellensatz property to all Noetherian

domains D.

I. Introduction and Definitions

Hilbert’s Nullstellensatz states for an algebraically closed field F that if f1 , . . .,

fm and f are in F [x1, . . . , xn] such that f(a) = 0 for all those a ∈ Fn for which

f1(a) = . . . = fm(a) = 0, then f ∈
√

(f1, . . . , fm). In this paper we investigate

analogues of this theorem that hold when we replace F by a Noetherian domain

D and F [x1, . . . , xn] by the ring of integer-valued polynomials in n indeterminates

over D. For a survey of this topic, see chapters VII and XI of [2], and for related

recent research [3, 8, 9, 5]. Throughout this paper, D denotes an integral domain

with quotient field K .

Definition. The ring of integer-valued polynomials in n indeterminates over D

is defined as Int(Dn) = {f ∈ K[x1, . . . , xn] | f(a) ∈ D for all a ∈ Dn}. We write

Int(D) for Int(D1), and define Int(D0) = D.

Brizolis [1] in 1975 proposed the following “Nullstellensatz property” and char-

acterized among Dedekind domains with perfect residue fields those D for which

Int(Dn) had the property (including, for instance, the ring of integers of every

number field).

MSC 2000: Primary 13F20; Secondary 13B25, 11C08, 14A25. Keywords: Hilbert rings,

integer-valued polynomials, Jacobson rings, Nullstellensatz, Skolem properties.
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Definition. Int(Dn) has the Nullstellensatz property, if for all polynomials f1 ,

. . ., fm and f ∈ Int(Dn) satisfying f(a) ∈ (f1(a), . . . , fm(a)) for all a ∈ Dn , it is

true that f ∈
√

(f1, . . . , fm).

We also consider a slightly stronger property, which we accordingly call the

stronger Nullstellensatz property. For an ideal I in a commutative ring R, we

denote by J (I) the Jacobson radical of I , i.e., the intersection of all maximal

ideals of R containing I .

Definition. We say that Int(Dn) has the stronger Nullstellensatz property, if for

all polynomials f1, . . . , fm and f ∈ Int(Dn) satisfying f(a)∈J
(
(f1(a), . . . , fm(a))

)

for all a ∈ Dn , it is true that f ∈
√

(f1, . . . , fm).

In 1936, Skolem [16] had shown an analogue for integer-valued polynomials

of the so called “weak Nullstellensatz”, the theorem stating for an algebraically

closed field F that if f1 , . . ., fm generate a proper ideal of F [x1, . . . , xn] then

there exists a ∈ Fn with f1(a) = . . . = fm(a) = 0. Skolem gave a construction

of g1, . . . , gm ∈ Int(Zn) with f1g1 + . . . + fmgm = 1 for any f1, . . . , fm ∈ Int(Zn)

satisfying f1(a) Z + . . . + fm(a) Z = Z for all a ∈ Z
n , thereby effectively proving

for Int(Zn) the condition since known as the Skolem property:

Definition. Int(Dn) has the Skolem property, if for every finite set of polynomials

f1, . . . , fm ∈ Int(Dn) satisfying (f1(a), . . . , fm(a)) = D for all a ∈ Dn , it is true

that (f1, . . . , fm)= Int(Dn). D is called a Skolem ring if the ring of integer-valued

polynomials in one indeterminate, Int(D), has the Skolem property.

Clearly, the Nullstellensatz property for Int(Dn) implies the Skolem property

for Int(Dn). Also, it is easy to see that each of the properties for Int(Dn) implies

the same property for Int(Dm) for all m ≤ n ([2] Lemma XI.3.2). In particular, if

Int(Dn) satisfies the Skolem property for some n then D is a Skolem ring.

Remark 1.1. We must bear in mind that the Skolem property of Int(Dn)

depends not only on the ring Int(Dn), but also on the manner of its elements

being interpreted as functions. As a ring, Int(Dn+1) is canonically isomorphic

to Int(Int(Dn)) for every infinite domain D ([2] Prop. XI.1.1), but the Skolem

property of Int(Dn+1) (concerning functions in n + 1 variables f :Dn+1 → D) is

different from the Skolem property of Int(Int(Dn)) (concerning functions in one

variable f : Int(Dn)→ Int(Dn)). It is, however, easy to see that the former implies

the latter (cf. Remark 4.3).

Of the various necessary and sufficient conditions for Skolem and Nullstel-

lensatz properties proved by Brizolis, Chabert and McQuillan, the most general
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so far is Chabert’s result [7] that a certain list of properties, which we will call

the “Chabert-Brizolis criterion” for short (condition 5 of Theorem 4.2 below),

characterizes the domains D for which Int(Dn) has the Nullstellensatz property

for all n, both among Noetherian domains with dim(D)>1 and among Noetherian

domains of dim(D) = 1 and char(D) = 0. This characterization implies the

equivalence of Skolem and (a priori stronger) Nullstellensatz properties for those

Noetherian domains for which it holds, since the criterion is known to be necessary

for D to be a Skolem ring.

In fact, it is known that a Noetherian domain satisfies the Chabert-Brizolis

criterion if and only if it is a Skolem ring. This previous result of Chabert [6]

and McQuillan [15], together with the equivalence of Skolem and Nullstellensatz

properties in one variable (Chabert [7] and Brizolis [1]), shows that the character-

ization we wish to prove for several variables is true for one variable. Due to the

fact that K[x] is a principal ideal domain, the one variable case can be proved

with comparatively little effort (cf. [2], Theorems VII.5.1 and VII.5.9).

In this paper we show for an arbitrary Noetherian domain D the equivalence

of the Chabert-Brizolis criterion to the Nullstellensatz property of Int(Dn) for

all n, thereby closing the gap at dim(D) = 1, char(D) 6= 0. Our proof takes its

simplest form in the case of a one-dimensional domain, but works for any Noethe-

rian domain with the addition of a few technicalities (Remark 2.3, Lemma 3.3,

Lemma 3.4) that can be skipped when assuming dim(D) = 1.

We use a two-step approach showing first the equivalence of Skolem and Null-

stellensatz property (Theorem 2.4) and then the sufficiency of the criterion for

the Skolem property (Theorem 3.5). For the first step, we adapt Rabinowitsch’s

argument that the weak Nullstellensatz for F [x1, . . . , xn+1] implies the Nullstel-

lensatz for F [x1, . . . , xn], to show that the Skolem property for Int(Dn+1) implies

the Nullstellensatz property for Int(Dn).

To formulate the Chabert-Brizolis criterion, we must define two ring-theoretic

entities, the well-known Hilbert ring (a.k.a. Jacobson ring), and the lesser known

d-ring. The criterion then consists of these two properties, together with the

requirement that every maximal ideal M of D either have an algebraically closed

residue field or be of height 1 with a finite residue field.

Definition. A domain D is a Hilbert ring (Goldman [11]), if the radical of every

ideal I of D is equal to J (I), the intersection of all maximal ideals containing I .

(Krull called such rings Jacobson rings [14].)

Although Hilbert rings play an important part in the investigation of Null-
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stellensatz analogues for integer-valued polynomials, so far no analogue has been

proposed for Goldman’s and Krull’s proof of the Nullstellensatz ([13] §1.3) based

on the fact that a domain R is a Hilbert ring if and only if R[x] is a Hilbert ring.

While in principle it is possible to get to Int(Dn) from D inductively by repeatedly

passing from R to Int(R) (by the isomorphism Int(Int(Dn)) ≃ Int(Dn+1)), no

condition comparable to the Hilbert ring property is known to pass from R to

Int(R). In particular, R being a Hilbert ring does not imply the same for Int(R)

([1] Example 4.3).

Brizolis [1] and Gunji and McQuillan [12] simultaneously introduced d-rings

in 1975. This is the concept needed to show the Skolem property with respect to

ideals of Int(Dn) lying over (0) in D.

Definition. A domain D is a d-ring if for every non-constant polynomial f ∈D[x]

there exists a maximal ideal M of D and an element d ∈ D such that f(d) ∈ M .

Alternatively, d-rings can be characterized as those domains, for which every

integer-valued rational function is an integer-valued polynomial. We summarize a

few facts about d-rings that we’ll need (cf. [2], §VII.2).

Fact 1.2 ([1] Lemma 1.3, [12] Prop. 1). The following are equivalent:

(i) D is a d-ring.

(ii) For every non-constant f ∈ D[x], if S is the set of maximal ideals M of D,

such that f has a zero mod M , then
⋂

M∈S M = (0).

(iii) For every non-constant f ∈ Int(D), there exists a maximal ideal M of D

and an element d ∈ D such that f(d) ∈ M .

Fact 1.3 ([12] Prop. 3, Corollary 2). Let D ⊆ R be domains, and D a d-ring.

(a) If R is integral over D, then R is a d-ring.

(b) If R is finitely generated as a ring over D, then R is a d-ring.

Note that Fact 1.2 (ii) implies that (0) in a d-ring is always an intersection of

maximal ideals, and that therefore every one-dimensional d-ring is a Hilbert ring.

II. Equivalence of Nullstellensatz and Skolem properties

Let M be a maximal ideal of D. For every a ∈ Dn , there is a maximal ideal of

Int(Dn) lying over M (with the same residue field as M ) given by

Ma,M = {f ∈ Int(Dn) | f(a) ∈ M}.
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Int(Dn) has the Skolem property if and only if every finitely generated proper ideal

of Int(Dn) is contained in a maximal ideal of the form Ma,M , for some maximal

ideal M of D and a ∈ Dn . Similarly, Int(Dn) has the stronger Nullstellensatz

property if and only if the radical of every finitely generated ideal I of Int(Dn) is

an intersection of maximal ideals of the form Ma,M , with M a maximal ideal of

D and a ∈ Dn .

Since prime ideals play a major rôle in the following, we briefly describe

Spec(Int(Dn)). First recall that if P is a prime ideal of infinite index in D,

then Int(Dn) ⊆ DP [x1, . . . , xn] ([2], Corollary XI.1.11) and therefore

(D \ P )−1Int(Dn) = DP [x1, . . . , xn],

which implies a bijective correspondence (given by lying over) between all prime

ideals of DP [x1, . . . , xn] and those prime ideals of Int(Dn) whose intersection with

D is contained in P .

Fact 2.1. Let D be a domain and P a prime ideal of infinite index in D. The

prime ideals Q of Int(Dn) with Q ∩ D = P are in bijective correspondence, via

Q = Q∩ Int(Dn), (Q prime E DP [x1, . . . , xn], PDP [x1, . . . , xn] ⊆ Q),

to the prime ideals Q of DP [x1, . . . , xn] containing PDP [x1, . . . , xn], and therefore

in bijective correspondence to the prime ideals Q̃ of (DP /PDP )[x1, . . . , xn], via

Q = π−1(Q̃) ∩ Int(Dn), (Q̃ prime E(DP /PDP )[x1, . . . , xn]),

where π:DP [x1, . . . , xn] → (DP /PDP )[x1, . . . , xn] is the canonical projection.

The prime ideals of Int(Dn) above a maximal ideal M of finite index in D

are not as easily characterized, but if ht(M) = 1, they are known. First note

that for every ideal M of D, every polynomial in Int(Dn) is uniformly continuous

in M -adic topology. For Noetherian D, this is shown in [2], Prop. III.2.3, by

means of the Artin-Rees Lemma; an elementary proof for arbitrary domains can

be found in [4] Prop. 1.4 (cf. also Remark 1.5). Both proofs are for one variable,

but obviously carry over to several. Therefore, if M is a maximal ideal of D, and

D̂M the M -adic completion of D, then every f ∈ Int(Dn) induces a continuous

function f : D̂M

n
→ D̂M .
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Fact 2.2 ([2], Corollary XI.1.8 and Lemma XI.2.8). Let D be a Noetherian

domain and M a maximal ideal of finite index in D with ht(M) = 1. By D̂M

denote the M -adic completion of D with maximal ideal M̂ . Then every prime

ideal of Int(Dn) above M is maximal and of the form

M
a,M̂

= {f ∈ Int(Dn) | f(a) ∈ M̂},

for some a ∈ D̂M

n
.

Remark 2.3 ([2] Lemma VII.4.2). If M is a maximal ideal in a Noetherian Skolem

ring, then D/M is algebraically closed or ht(M) = 1.

Proof. Suppose otherwise. (This implies D is not a field.) Since ht(M) > 1, there

exists a maximal ideal M ′ of the integral closure D′ of D with M ′ ∩ D = M

and ht(M ′) > 1. D being Noetherian, D′ is a Krull domain and so is D′
M ′ ,

such that D′
M ′ =

⋂
P ′⊆M ′ D′

P ′ , the intersection being over all height 1 prime

ideals of D′ contained in M ′ . Each such P ′ is properly contained in M ′ , so

P = P ′ ∩D is properly contained in M and therefore of infinite index in D, such

that Int(D) ⊆ DP [x] ⊆ D′
P ′ [x]. We have shown Int(D) ⊆ D′

M ′ [x].

As D/M is not algebraically closed, there exists a polynomial f ∈ D[x], not

a constant in (D/M)[x], that has no zero mod M , wherefore by the Skolem

property, (M,f)Int(D) = Int(D). This implies (M,f)D′
M ′ [x] = D′

M ′ [x], making

f a constant in (D′
M ′/M ′D′

M ′)[x], contrary to assumption. �

Theorem 2.4. Let D be a Noetherian domain and n ∈ N. If Int(Dn+1) has the

Skolem property, then Int(Dn) has the stronger Nullstellensatz property.

Proof. Given f1, . . . , fm, f ∈ Int(Dn) such that for every maximal ideal M of D,

and every a ∈ Dn , whenever f1(a), . . . , fm(a) ∈ M then f(a) ∈ M , we must show

for every prime ideal Q of Int(Dn): if f1, . . . , fm ∈ Q then f ∈ Q.

First consider a prime ideal Q lying over a prime ideal of infinite index in D. By

Fact 2.1, Q=Int(Dn)∩Q, where Q is a prime ideal of R[x1, . . . , xn] for an overring

R of D, such that Int(Dn) ⊆ R[x1, . . . , xn] and Int(Dn+1) ⊆ R[x1, . . . , xn+1].

The polynomials f1, . . . , fm, 1 − xn+1f ∈ Int(Dn+1) satisfy the hypothesis of

the Skolem property of Int(Dn+1), so there exist h1, . . . , hm, h ∈ Int(Dn+1) with

f1h1 + . . . + fmhm + (1 − xn+1f)h = 1.

We now substitute 1/f for xn+1 and multiply both sides by fr , where r is the

maximal degree in xn+1 of any hi . This gives f1g1 + . . . + fmgm = fr , where

g1, . . . , gm∈R[x1, . . . , xn], because hi is of the form
∑

ck1,...,kn+1
xk1 . . . xkn+1 , with
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ck1,...,kn+1
∈R and therefore gi =

∑
ck1,...,kn+1

xk1 . . . xknfr−kn+1 , with ck1,...,kn+1
∈

R and fr−kn+1 ∈ R[x1, . . . , xn]. Therefore f1, . . . , fm ∈ Q implies fr ∈ Q, and, Q

being prime, f ∈ Q. We conclude that f ∈ Q = Int(Dn) ∩ Q.

Now consider a prime ideal Q of Int(Dn) above a maximal ideal M of finite

index in D. By Fact 2.2 and Remark 2.3, Q = M
a,M̂

= {g ∈ Int(Dn) | g(a) ∈ M̂},

for some a∈ D̂M

n
. If f1, . . . , fm ∈M

a,M̂
, then, since the functions fi: D̂M

n
→ D̂M

are continuous, some M̂ -adic neighborhood U of a gets mapped into M̂ by all

fi . In particular, f1(b), . . . , fm(b) ∈ M for all b ∈ U ∩ Dn , and therefore, by the

hypothesis of the stronger Nullstellensatz property, f(b) ∈ M for all b ∈ U ∩ Dn .

Since D is dense in D̂M , the continuity of f : D̂M

n
→ D̂M implies f(a) ∈ M̂ ,

i.e. f ∈M
a,M̂

. �

Corollary. If D is a Noetherian domain then Int(Dn) has the stronger Nullstel-

lensatz property for all n ∈ N if and only if Int(Dn) has the Skolem property for

all n ∈ N.

The Rabinowitsch-type argument from the first case of the above proof also

yields a simpler proof of the following fact, which forms part of the argument for

the necessity of the Chabert-Brizolis criterion:

Remark 2.5 ([2], Thm. VII.5.1). Every Noetherian Skolem ring is a Hilbert ring;

more generally, the radical of every finitely generated ideal in a Skolem ring is an

intersection of maximal ideals.

Proof. Given d1, . . . , dm and d ∈ D, such that d1, . . . , dm ∈ M =⇒ d ∈ M ,

for every maximal ideal M of D, and a non-maximal prime ideal P of D with

d1, . . . , dm ∈ P , we use the Skolem property of Int(D) to show d ∈ P :

Since [D :P ] is infinite, Int(D)⊆DP [x]. The polynomials d1, . . . , dm and 1−dx

in Int(D) satisfy the hypothesis of the Skolem property, so there exist g1, . . . , gm

and g∈ Int(D) with d1g1+. . .+dmgm+(1−dx)g =1. We substitute d−1 for x and

multiply both sides by dr , where r = maxdeg gi , and get d1h1 + . . . + dmhm = dr ,

with hi ∈ K . Since gi(x) =
∑

k akxk with ak ∈ DP , however, hi =
∑

k akdr−k is

actually in DP . Therefore, d1, . . . , dm ∈ P implies dr ∈ PDP , and we conclude

d ∈ PDP ∩ D = P . �

III. Sufficiency of Criterion for Skolem Property

We proceed to show for Noetherian domains of arbitrary characteristic that the

Chabert-Brizolis criterion implies the Skolem property in several indeterminates

(Theorem 3.5). The nontrivial part of the argument concerns maximal ideals of
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Int(Dn) lying over (0) in D (Lemma 3.2). To work around the problems presented

by non-separable extensions of K we will replace K by its prefect closure F , whose

algebraic extensions are all separable. This necessitates replacing D by a finite

ring extension inside F , but, owing to the restrictions on the residue fields of D,

this ring extension turns out to be harmless for our purposes, since it involves only

few nontrivial residue field extensions. (Lemma 3.1).

Recall that for every field K there exists in the algebraic closure K̄ a unique

smallest perfect field containing K , called the perfect closure of K . If char(K)=0,

then K is its own prefect closure; if char(K) = p, then the perfect closure is

obtained from K by adjoining the pn-th roots (for all n∈N) of all elements of K .

This is a consequence of the fact that a field E of characteristic p is perfect if and

only if the Frobenius endomorphism ϕ(x) = xp on E , ϕ:E → E , is surjective.

The following two lemmata are mainly relevant in characteristic p, as the

contingency they provide for, a maximal ideal M of Int(Dn) with M∩D = (0), is

known not to occur for a Noetherian d-ring of characteristic 0 ([2], Lemma XI.3.3,

Prop. XI.3.4). Allowing char(D) = 0, however, does not add any difficulty and

keeps our proof self-contained.

Lemma 3.1. Let D be a domain with quotient field K , F the perfect closure of

K , and R = D[c1, . . . , ck] ⊆ F a domain finitely generated as a ring over D. Let

S denote the set of prime ideals P of D, such that DP /PDP is a perfect field

and for some prime ideal Q of R with Q∩D = P the embedding of residue fields

DP /PDP →֒ RQ/QRQ is not surjective. Then
⋂

P∈S P 6= (0).

Proof. First assume char(K) = p. Since R ⊆ F , there exists an n ∈ N such that

cpn

i ∈ K for 1 ≤ i ≤ k. Write cpn

i = aib
−1
i with ai, bi ∈ D and set b = b1 · . . . · bk .

We claim that b ∈
⋂

P∈S P . Suppose P is a prime ideal of D such that b /∈ P and

DP /PDP is perfect. Let Q be a prime ideal of R with Q∩D = P ; we must show

that DP /PDP →֒ RQ/QRQ is surjective.

The residue classes of c1, . . . , ck generate RQ/QRQ over DP /PDP , and ci is

a pn-th root of aib
−1
i ∈ DP . Now aib

−1
i + PDP has a pn -th root di + PDP

in DP /PDP , since this field is perfect. By the injectivity of the Frobenius

homomorphism, ci+QRQ =di+QRQ , i.e., ci+QRQ is in the image of DP /PDP →֒

RQ/QRQ .

If char(K) = 0, then R ⊆K and ci = aib
−1
i with ai, bi ∈D. Let b = b1 · . . . · bk .

Then c1, . . . , ck ∈ DP for every prime ideal P of D with b /∈ P , i.e., any residue

field extension DP /PDP →֒ RQ/QRQ with b /∈ P is trivial. �
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Lemma 3.2. Let D be a d-ring, such that the residue field of every maximal ideal

of D is perfect. If I is a finitely generated ideal of Int(Dn) contained in an ideal

of the form M = P ∩ Int(Dn), where P = {f ∈ K[x1, . . . , xn] | f(u1, . . . , un) = 0},

u1, . . . , un ∈ K̄ , then I ⊆ Ma,M for some maximal ideal M of D and a ∈ Dn .

Proof. Let F be the perfect closure of K , and u∈K̄ such that F [u1, . . . , un]=F [u].

By multiplying u with a suitable constant in D, if necessary, we may assume u

integral over D. For 1≤ i≤n, let gi(x)∈F [x], such that gi(u)=ui . If c1, . . . , cl∈F

is a list of the coefficients of g1, . . . , gn , let d ∈ D such that dci = c′i is integral

over D for 1 ≤ i ≤ l and set E = K[c1, . . . , cl] = K[c′1, . . . , c
′
l].

Let f(x) = xk + αk−1x
k−1 + . . . + α0 be the minimal polynomial of u over

E . Its coefficients α0, . . . , αk−1 are integral over D, since u is. Define R =

D[c′1, . . . , c
′
l, α0, . . . , αk−1], then R is a domain with quotient field E , finitely

generated integral over D, and a d-ring by Fact 1.3.

Let f1, . . . , fm be generators of I , and define f∗
i = fi(g1(x), . . . , gn(x)) ∈ E[x].

Since f∗
i (u) = fi(u1, . . . , un) = 0, there exist hi ∈ E[x] with f∗

i (x) = f(x)hi(x).

Let β ∈ R be a common denominator of the coefficients (written as fractions of

elements in R) of all the polynomials gj , fi , f∗
i and hi for 1 ≤ j ≤ n, 1 ≤ i ≤ m.

Let b ∈ D be a non-zero element (existing by Lemma 3.1) in the intersection

of all maximal ideals M of D such that DM/MDM →֒ RP /PRP is not surjective

for some prime ideal P of R with P ∩ D = M .

Using Fact 1.2 (ii), let Q be a maximal ideal of R with bβ /∈Q, and r ∈R with

f(r) ∈ Q. Let M = Q ∩ D; then M is a maximal ideal of D, since R is integral

over D and Q is maximal. We claim that f1, . . . , fm have a simultaneous zero

mod M in Dn .

Since β /∈ Q, all coefficients of all the polynomials gj , fi , f∗
i , hi are in RQ

(and those of f are in R, by construction). Let sj = gj(r) (1 ≤ j ≤ n), then

fi(s1, . . . , sn) = f∗
i (r) = f(r)hi(r) ∈ QRQ.

Let tj ∈ DM with tj + QRQ = sj + QRQ (exists since b /∈ M ) and let aj ∈ D

with aj + MDM = tj + MDM (exists since M is maximal). Then for 1 ≤ i ≤ m,

fi(a1, . . . , an) ∈ QRQ ∩ D = M , or in other words, fi ∈ Ma,M . �

The following two lemmata are needed to accommodate domains of dim(D)>1.

We show that for those domains, under certain hypotheses (which are always

satisfied by a Skolem ring), every maximal ideal of Int(Dn) lies over a maximal

ideal of D. Actually, more is true: under the same hypotheses, every G-ideal of

Int(Dn) lies over a maximal ideal of D ([2], proof of Prop. XI.3.7). (Recall that
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a G-ideal, or Goldman ideal, is a prime ideal that is not an intersection of prime

ideals strictly containing it.)

Lemma 3.3. Let D be a Noetherian Hilbert ring with dim(D) > 1, such that

every maximal ideal of finite index in D is of height 1. Then every maximal ideal

of Int(Dn) lies either over (0) or over a maximal ideal in D.

Proof. Let P be a prime ideal of Int(Dn) not lying over (0) or a maximal ideal

of finite index in D. We will show that if P does not lie over a maximal ideal of

D[x1, . . . , xn], then it is itself not maximal. Since Hilbert rings are characterized

by the fact that every maximal ideal of D[x1, . . . , xn] lies over a maximal ideal of

D, this does it. Suppose P ′ = P ∩ D[x1, . . . , xn] is not maximal. Let P ′ ⊂ Q′ be

a proper containment of prime ideals, and Q = Q′ ∩ D. Then [D : Q] is infinite.

We have (D \Q)−1Int(Dn) = DQ[x1, . . . , xn] = (D \Q)−1D[x1, . . . , xn], so the

prime ideals of DQ[x1, . . . , xn] mediate a bijective correspondence between the

prime ideals whose intersection with D is contained in Q of Int(Dn) on one hand

and of D[x1, . . . , xn] on the other hand. Therefore P ′⊂Q′ corresponds to a proper

containment of prime ideals P ⊂ Q in Int(Dn) and P is not maximal. �

The next lemma is only needed to show the redundancy of the d-ring property

for domains of dim(D) > 1 in Theorem 4.2. If we did not care about this

redundancy, we could skip the lemma and show Theorem 3.5 (by the same proof)

under the hypothesis “Noetherian d-ring and, if dim(D) > 1, also Hilbert ring”.

Lemma 3.4 ([2], proof of Prop. XI.3.7) Let D be a Noetherian Hilbert ring with

dim(D) > 1, such that every maximal ideal of finite index is of height 1. Then no

maximal ideal of Int(Dn) lies over (0) in D.

Proof. Let M be a maximal ideal of Int(Dn) and suppose M∩D = (0). Let Q be

a prime ideal of D with ht(Q)>1. Then [D :Q] is infinite and therefore Int(Dn)⊆

DQ[x1, . . . , xn]. By the correspondence between prime ideals of DQ[x1, . . . , xn] =

(D\Q)−1Int(Dn) and those prime ideals P of Int(Dn) with P∩D⊆Q, M=M̃∩D

for some maximal ideal M̃ of DQ[x1, . . . , xn]. Now M̃ ∩ DQ = (0), making (0) a

G-ideal of DQ ([10], proof of Thm. 31.8), but (0) never is a G-ideal in a Noetherian

domain of dimension greater 1 ([13] Thm. 146), a contradiction. �

Theorem 3.5. Let D be a Noetherian domain and either a d-ring of dim(D) ≤ 1

or a Hilbert ring of dim(D)>1. If for every maximal ideal M of D, either D/M is

finite and ht(M) = 1 or D/M is algebraically closed, then Int(Dn) has the Skolem

property for all n ∈ N.
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Proof. Given polynomials f1, . . . , fm ∈ Int(Dn) that generate a proper ideal of

Int(Dn), we wish to show that they are contained in a maximal ideal of the form

Ma,M = {f ∈ Int(Dn) | f(a) ∈M} for some a ∈Dn and a maximal ideal M of D.

Let M be a maximal ideal of Int(Dn) with f1, . . . , fm ∈M and let P = M∩ D.

By Lemma 3.3, P is either a maximal ideal of D or (0).

First case: [D : P ] finite. By Fact 2.2, M = Mb,P̂ , for some b ∈ D̂P

n
. By

continuity of the functions fi: D̂P

n
→ D̂P , there is a neighborhood U of b, such

that fi(U) ⊆ P̂ for 1 ≤ i ≤ m. Pick a ∈ U ∩ Dn (which exists since Dn is dense

in D̂P

n
), then fi(a) ∈ P̂ ∩ D = P , i.e. fi ∈Ma,P for 1 ≤ i ≤ m.

Second case: [D :P ] infinite, P 6=(0). Int(Dn)⊆DP [x1, . . . , xn], since [D :P ] is

infinite. P is maximal, so by Fact 2.1, M=Q∩Int(Dn) for some maximal ideal Q

of DP [x1, . . . , xn] with PDP [x1, . . . , xn]⊆Q. As DP /PDP is algebraically closed,

there exist a1, . . . , an in DP , such that Q=(x1−a1, . . . , xn−an)+PDP [x1, . . . , xn].

As the ai only matter mod PDP and P is maximal, they can be chosen to lie in

D, and we see that M = Ma,P for some a = (a1, . . . , an) ∈ Dn .

Third case: P = (0). By the hypothesis of the theorem and Lemma 3.4, D is

a d-ring in this case. By Fact 2.1 and the weak Nullstellensatz, M is exactly the

kind of maximal ideal treated in Lemma 3.2, so we are done. �

IV. Nullstellensatz criterion for Noetherian domains

We now have all the necessary components for the characterization (among all

Noetherian domains) of those domains that satisfy the Nullstellensatz property for

integer-valued polynomials in any number of variables, except that the necessity

of part of the residue field condition hasn’t been explained yet.

Remark 4.1 ([2] Prop. VII.4.2). If M is a finitely generated maximal ideal in a

Skolem ring D, then D/M is either algebraically closed or finite.

Proof. Suppose otherwise. D/M not being algebraically closed, there exists a

polynomial f ∈ D[x], whose residue class in (D/M)[x] is not a constant, that

has no zero in D mod M . Also, D/M being infinite, Int(D) ⊆ DM [x]. By the

Skolem property, (M,f)Int(D) = Int(D), and therefore (M,f)DM [x] = DM [x].

This would make f a constant in (DM/MDM )[x], contrary to assumption. �

In the case of a Noetherian domain D with dim(D) > 1 ([7] Thm. 2, [2]

Prop. XI.3.7) and in the case of a Noetherian domain with dim(D) = 1 and

char(D) = 0 ([7], Thm. 3, [2] Thm. XI.3.6), the following result is due to Chabert,

several special cases (mostly concerning Dedekind domains) having previously been

shown by Brizolis. Our approach also provides a new proof of the known cases.
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If D is a field, the theorem below reduces to the statement that Hilbert’s

Nullstellensatz holds if and only if the weak Nullstellensatz holds, which in turn

is the case if and only if the field is algebraically closed. Note, however, that we

did not prove this, since we took the weak Nullstellensatz for algebraically closed

fields for granted in the proof of Theorem 3.5.

Theorem 4.2. Let D be a Noetherian domain. The following are equivalent:

(1) For all n ∈ N, Int(Dn) has the stronger Nullstellensatz property.

(2) For all n ∈ N, Int(Dn) has the Nullstellensatz property.

(3) For all n ∈ N, Int(Dn) has the Skolem property.

(4) D is a Skolem ring.

(5) D is a d-ring and a Hilbert ring, and for every maximal ideal M of D, either

D/M is finite and ht(M) = 1 or D/M is algebraically closed.

If dim(D) = 1 then “Hilbert ring” in (5) is redundant.

If dim(D) > 1 then “d-ring” in (5) is redundant.

Proof. The implications (1 ⇒ 2), (2 ⇒ 3) and (3 ⇒ 4) are evident.

(4 ⇒ 5) The d-ring property of D is just a special case of the Skolem property

of Int(D) (Fact 1.2 (iii)), Skolem ring implies Hilbert ring by Remark 2.5, and the

residue field condition is explained in Remarks 2.3 and 4.1.

(5 ⇒ 3) is Theorem 3.5; and (3 ⇒ 1) is a corollary of Theorem 2.4.

Finally, the redundancy of either d-ring or Hilbert ring, depending on the

dimension of D, is evident from the hypothesis of Theorem 3.5. �

Since d-rings feature prominently in the above characterization, we should

mention that they occur in abundance (cf. [2] §VII.2). For instance, Z is a d-ring,

and so is every integral or finitely generated ring extension of a d-ring (Fact 1.3).

In particular, every ring consisting of integers in a number field is a d-ring. Also,

every ring R with D[x] ⊆ R ⊆ K[x] for a domain D with quotient field K is a

d-ring. No semi-local ring, however, is a d-ring (Fact 1.2 (ii)).

Remark 4.3. Another equivalent property that we could insert in Theorem 4.2 is

(3 1

2
) For all n ≥ 0, Int(Dn) is a Skolem ring.

This is the statement that for all n ≥ 0, Int(Int(Dn)), the ring of integer-valued

polynomials in one indeterminate over Int(Dn), has the Skolem property. For a

finite field, this and all other items of Theorem 4.2 are trivially false, so let D be

an infinite domain. Obviously, (31

2
⇒ 4); to see (3 ⇒ 3 1

2
), note that the Skolem

12
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property of Int(Dn+1) implies the Skolem property of Int(Int(Dn)). Indeed, under

the customary identification of Int(Int(Dn)) with Int(Dn+1) ([2] Prop. XI.1.1), the

Skolem property of Int(Int(Dn)) says that every finitely generated proper ideal of

this ring is contained in a maximal ideal of the form Ma,Q , with a ∈ Int(Dn) and

Q a maximal ideal of Int(Dn), while the Skolem property of Int(Dn+1) says the

same thing with the additional requirements that a ∈ D ⊆ Int(Dn) and Q be of

the form Q = Mb,M , with b ∈ Dn and M a maximal ideal of D.
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