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Abstract. Let f ∈ Z[X,Y, Z] be a non-constant, absolutely irreducible, homogeneous
polynomial with integer coefficients, such that the projective curve given by f = 0 has a
function field isomorphic to the rational function field Q(T ). We show that all integral
solutions of the Diophantine equation f = 0 (up to those corresponding to some singular
points) can be parametrized by a single triple of integer-valued polynomials. In general,
it is not possible to parametrize this set of solutions by a single triple of polynomials
with integer coefficients.

Recently, the first author and L. Vaserstein proved that the set of all Pythagorean
triples can be parametrized by a single triple of integer-valued polynomials, but not by a
single triple of polynomials with integer coefficients (in any number of variables) [2]. We
denote by Int (Zm) the ring of integer-valued polynomials in m variables,

Int (Zm) = {ϕ ∈ Q[X1, . . . , Xm] | ϕ(Zm) ⊂ Z} .
In this paper we will generalize the affirmative part of [2] to such homogeneous equations
as define a (plane) projective curve with a rational function field.

Throughout this paper, f ∈ Z[X, Y, Z] \ {0} denotes an irreducible polynomial with
integer coefficients, which is homogeneous of degree n ≥ 1. Let Q be an algebraic closure
of Q and Cf ⊂ P2(Q) the plane projective curve defined by f = 0,

Cf =
{

(x : y : z) ∈ P2(Q) | f(x, y, z) = 0
}

.

We will further suppose that the function field K = Q(Cf ) of Cf over Q is isomorphic
to the rational function field Q(T ). This implies that f is absolutely irreducible (i.e.,
irreducible in Q[X, Y, Z]). Our assumption is satisfied, for instance, if Cf has genus 0 and
possesses a regular point defined over Q.

Recall that a point (x : y : z) ∈ Cf is singular if and only if the local ring R(x:y:z) ⊂ K
of all rational functions of Cf that are defined at (x : y : z) is not a discrete valuation
ring (cf. [3, pp. 56-57]). In this case, there are finitely many discrete valuation rings
OPi

⊂ K above R(x:y:z) (meaning R(x:y:z) ⊂ OPi
and m(x:y:z) ⊂ Pi, where m(x:y:z) and

Pi denote the corresponding maximal ideals). Let Cbad
f denote the set of those singular

points (x : y : z) ∈ Cf for which there exists no discrete valuation ring OP above R(x:y:z)

with OP/P ≃ Q. These points will be “bad” for our main theorem.

We investigate the set of integer solutions of the Diophantine equation f(X, Y, Z) = 0,

Lf :=
{

(x, y, z) ∈ Z3 | f(x, y, z) = 0
}

,
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up to those solutions which correspond to the “bad” points of the curve. We set

Lbad
f = {(x, y, z) ∈ Lf | (x : y : z) ∈ Cbad

f } .
Theorem 1. Let f ∈ Z[X, Y, Z]\{0} be an irreducible, homogeneous polynomial of degree

n ≥ 1 such that the function field K = Q(Cf ) is isomorphic to Q(T ).
Then there exist polynomials g1, g2, g3 ∈ Int (Zm) for some m ∈ N such that

Lf \ Lbad
f =

{

(

g1(x), g2(x), g3(x)
)

∣

∣

∣
x ∈ Zm

}

;

in other words, up to the “bad” solutions, all solutions of the Diophantine equation

(1) f(X, Y, Z) = 0

can be parametrized by one triple of integer-valued polynomials.

The suppositions of Theorem 1 imply that for n ≤ 2 the curve Cf has no singular
point. For n = 1, Cf is just a line and the result of Theorem 1 is obvious (even with
gi ∈ Z[U, V ]). For n = 2, we immediately obtain

Corollary 2. Let f ∈ Z[X, Y, Z] be an absolutely irreducible quadratic form. Then there

exist polynomials g1, g2, g3 ∈ Int (Zm) for some m ∈ N such that

Lf =
{

(

g1(x), g2(x), g3(x)
)

∣

∣

∣
x ∈ Zm

}

.

For the proof of Theorem 1 we will use the resultant of polynomials and therefore recall
some well-known results on it (cf. [5, Chap. I, §9-10]).
Given polynomials g, h ∈ Z[U, V ] in the variables U, V , let ResV (g, h) ∈ Z[U ] denote the
resultant of g, h when considered as polynomials in the variable V over the ring Z[U ],
and, vice versa, ResU (g, h) ∈ Z[V ] the resultant of g, h as polynomials in U .

Lemma 3. Let g, h ∈ Z[U, V ] be relatively prime polynomials.

a) Then ResU (g, h) 6= 0 and ResV (g, h) 6= 0, and there exist polynomials r, s, r′, s′ ∈
Z[U, V ] with

gr + hs = ResU (g, h) and gr′ + hs′ = ResV (g, h) .

b) If g and h are homogeneous of degree d1 and d2, resp., then ResU (g, h) and

ResV (g, h) are each homogeneous of degree d1d2, and consequently

ResU (g, h) = a V d1d2 and ResV (g, h) = b Ud1d2 with a, b ∈ Z \ {0} .

We will also use the implication (D)⇒(B) of the main theorem of [1], which for the
sake of completeness we state in the following

Proposition 4. Let k ∈ N and suppose that S ⊂ Zk is the set of integer k-tuples in the

range of a k-tuple of polynomials with rational coefficients, as the variables range through

the integers, i.e., there exist h1, . . . , hk ∈ Q[X1, . . . , Xr] for some r ∈ N such that

S = {(h1(x), . . . , hk(x)) | x ∈ Zr} ∩ Zk .

Then S is parametrizable by a k-tuple of integer-valued polynomials, i.e., there exist

g1, . . . , gk ∈ Int (Zm) for some m ∈ N such that

S = {(g1(x), . . . , gk(x)) | x ∈ Zm} .
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Proof of Theorem 1. Let f be as in the statement of the theorem. Then there exist
homogeneous polynomials h1, h2, h3 ∈ Q[U, V ] such that

(X, Y, Z) =
(

h1(U, V ), h2(U, V ), h3(U, V )
)

defines a birational (projective) isomorphism between Cf and the projective line. We may
assume h1, h2, h3 ∈ Z[U, V ] and gcd(h1, h2, h3) = 1 (see, for instance, [4, Sect. 2]).

For every Q-rational point (u : v) ∈ P1(Q),
(

h1(u, v) : h2(u, v) : h3(u, v)
)

is the evalu-

ation of the birational isomorphism at this point. This means that
(

h1(u, v) : h2(u, v) :

h3(u, v)
)

is a Q-rational point of Cf and its local ring is contained in some discrete valu-
ation ring of K of degree 1. Therefore

LQ :=
{

(

w h1(u, v), w h2(u, v), w h3(u, v)
)

∣

∣

∣
u, v, w ∈ Q

}

=
{

(

w h1(u, v), w h2(u, v), w h3(u, v)
)

∣

∣

∣
w ∈ Q, u, v ∈ Z with gcd(u, v) = 1

}

is exactly the set of all rational solutions of (1) except for those corresponding to points
of Cbad

f , and Lf \ Lbad
f = LQ ∩ Z3 is just the set of all integral triples of LQ.

We claim that there exists some d ∈ N such that for all u, v ∈ Z with gcd(u, v) = 1 it
follows that

gcd
(

h1(u, v), h2(u, v), h3(u, v)
)

∣

∣ d .

Let gcd(h1, h2) = t ∈ Z[U, V ] and put hi = t h′i with h′i ∈ Z[U, V ], i = 1, 2. Since h′1, h
′

2

are relatively prime, we obtain that ResV (h′1, h
′

2) = aU δ with some 0 6= a ∈ Z and δ ≥ 0,
and polynomials ρ1, ρ2 ∈ Z[U, V ] with ρ1h1 + ρ2h2 = atU δ. Since h1, h2, h3 were assumed
to be relatively prime, gcd(atU δ, h3) = cUα with c ∈ Z and 0 ≤ α ≤ δ. Dividing both
atU δ and h3 by cUα and applying the same reasoning as above we finally obtain that
there are 0 6= a1 ∈ Z, δ1 ≥ 0 and polynomials ϕ1, ϕ2, ϕ3 ∈ Z[U, V ] with

(2) ϕ1h1 + ϕ2h2 + ϕ3h3 = a1U
δ1 .

Using ResU in the same way, we obtain polynomials ψ1, ψ2, ψ3 ∈ Z[U, V ], 0 6= a2 ∈ Z and
δ2 ≥ 0 such that

(3) ψ1h1 + ψ2h2 + ψ3h3 = a2V
δ2 .

For any u, v ∈ Z with gcd(u, v) = 1, (2) and (3) imply that gcd
(

h1(u, v), h2(u, v), h3(u, v)
)

divides both a1u
δ1 and a2v

δ2 . It follows that

gcd
(

h1(u, v), h2(u, v), h3(u, v)
)

∣

∣ lcm(a1, a2) := d .

So we obtain polynomials ki = 1
d
hi ∈ Q[U, V ] with rational coefficients such that

Lf \ Lbad
f =

{

(

w k1(u, v), w k2(u, v), w k3(u, v)
)

∣

∣

∣
u, v, w ∈ Z

}

∩ Z3 .

Now we apply Proposition 4, which yields the assertion of Theorem 1. �
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Remarks. If the integers a1, a2 appearing in (2) and (3) in the proof of Theorem 1 are
both equal to 1, then ki = hi ∈ Z[U, V ] and Lf \ Lbad

f can actually be parametrized by a
triple of polynomials with integral coefficients (compare Example 2 below).
When applying Proposition 4, we have no information about the number m of variables
of the integer-valued polynomials gi appearing in Theorem 1.

Example 1. This example shows that for n ≥ 3 “bad” singular points may appear.
Consider

f = X3 + Y 3 +X2Z − 2Y 2Z ∈ Z[X, Y, Z] .

Then (0 : 0 : 1) ∈ Cf is a singular point. Only one discrete valuation ring lies over the

local ring R(0:0:1), and this valuation ring has residue class field isomorphic to Q(
√

2).
A birational (projective) isomorphism between Cf and the projective line is given by

(X : Y : Z) =
(

(V (2U2 − V 2)) : (U(2U2 − V 2)) : (V 3 + U3)
)

,

but there is no Q-rational point (u : v) ∈ P1(Q) corrsponding to the singular point
(0 : 0 : 1). Indeed, the corresponding point (u : v) = (1 :

√
2) is only defined over Q(

√
2).

Example 2. In contrast to the Pythagorean triples (corresponding to the unit circle, see
[2]), we know that for the equilateral hyperbola the set Lf can be parametrized by a single
triple of polynomials with integer coefficients. Let

f = XY − Z2 ∈ Z[X, Y, Z] .

All Q-rational points of Cf are given by (u2 : v2 : uv) with (u : v) ∈ P1(Q). If u, v ∈ Z

with gcd(u, v) = 1 then also gcd(u2, v2, uv) = 1. So the set of all integral solutions of
XY − Z2 = 0 is given by

{(u2w, v2w, uvw) | u, v, w ∈ Z} .
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