POLYNOMIAL PARAMETRIZATION OF THE SOLUTIONS OF DIOPHANTINE EQUATIONS OF GENUS 0

SOPHIE FRISCH AND GÜNTER LETTL
Dedicated to Prof. Władystaw Narkiewicz on the occasion of his 70 ${ }^{\text {th }}$ birthday.

Abstract

Let $f \in \mathbb{Z}[X, Y, Z]$ be a non-constant, absolutely irreducible, homogeneous polynomial with integer coefficients, such that the projective curve given by $f=0$ has a function field isomorphic to the rational function field $\mathbb{Q}(T)$. We show that all integral solutions of the Diophantine equation $f=0$ (up to those corresponding to some singular points) can be parametrized by a single triple of integer-valued polynomials. In general, it is not possible to parametrize this set of solutions by a single triple of polynomials with integer coefficients.

Recently, the first author and L. Vaserstein proved that the set of all Pythagorean triples can be parametrized by a single triple of integer-valued polynomials, but not by a single triple of polynomials with integer coefficients (in any number of variables) [2]. We denote by $\operatorname{Int}\left(\mathbb{Z}^{m}\right)$ the ring of integer-valued polynomials in m variables,

$$
\operatorname{Int}\left(\mathbb{Z}^{m}\right)=\left\{\varphi \in \mathbb{Q}\left[X_{1}, \ldots, X_{m}\right] \mid \varphi\left(\mathbb{Z}^{m}\right) \subset \mathbb{Z}\right\}
$$

In this paper we will generalize the affirmative part of [2] to such homogeneous equations as define a (plane) projective curve with a rational function field.

Throughout this paper, $f \in \mathbb{Z}[X, Y, Z] \backslash\{0\}$ denotes an irreducible polynomial with integer coefficients, which is homogeneous of degree $n \geq 1$. Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} and $C_{f} \subset \mathbb{P}^{2}(\overline{\mathbb{Q}})$ the plane projective curve defined by $f=0$,

$$
C_{f}=\left\{(x: y: z) \in \mathbb{P}^{2}(\overline{\mathbb{Q}}) \mid f(x, y, z)=0\right\} .
$$

We will further suppose that the function field $K=\mathbb{Q}\left(C_{f}\right)$ of C_{f} over \mathbb{Q} is isomorphic to the rational function field $\mathbb{Q}(T)$. This implies that f is absolutely irreducible (i.e., irreducible in $\overline{\mathbb{Q}}[X, Y, Z])$. Our assumption is satisfied, for instance, if C_{f} has genus 0 and possesses a regular point defined over \mathbb{Q}.

Recall that a point $(x: y: z) \in C_{f}$ is singular if and only if the local ring $R_{(x: y: z)} \subset K$ of all rational functions of C_{f} that are defined at $(x: y: z)$ is not a discrete valuation ring (cf. [3, pp. 56-57]). In this case, there are finitely many discrete valuation rings $\mathcal{O}_{P_{i}} \subset K$ above $R_{(x: y: z)}$ (meaning $R_{(x: y: z)} \subset \mathcal{O}_{P_{i}}$ and $\mathfrak{m}_{(x: y: z)} \subset P_{i}$, where $\mathfrak{m}_{(x: y: z)}$ and P_{i} denote the corresponding maximal ideals). Let $C_{f}^{\text {bad }}$ denote the set of those singular points $(x: y: z) \in C_{f}$ for which there exists no discrete valuation ring \mathcal{O}_{P} above $R_{(x: y: z)}$ with $\mathcal{O}_{P} / P \simeq \mathbb{Q}$. These points will be "bad" for our main theorem.

We investigate the set of integer solutions of the Diophantine equation $f(X, Y, Z)=0$,

$$
\mathcal{L}_{f}:=\left\{(x, y, z) \in \mathbb{Z}^{3} \mid f(x, y, z)=0\right\},
$$

[^0]up to those solutions which correspond to the "bad" points of the curve. We set
$$
\mathcal{L}_{f}^{\mathrm{bad}}=\left\{(x, y, z) \in \mathcal{L}_{f} \mid(x: y: z) \in C_{f}^{\text {bad }}\right\}
$$

Theorem 1. Let $f \in \mathbb{Z}[X, Y, Z] \backslash\{0\}$ be an irreducible, homogeneous polynomial of degree $n \geq 1$ such that the function field $K=\mathbb{Q}\left(C_{f}\right)$ is isomorphic to $\mathbb{Q}(T)$.
Then there exist polynomials $g_{1}, g_{2}, g_{3} \in \operatorname{Int}\left(\mathbb{Z}^{m}\right)$ for some $m \in \mathbb{N}$ such that

$$
\mathcal{L}_{f} \backslash \mathcal{L}_{f}^{\mathrm{bad}}=\left\{\left(g_{1}(\underline{x}), g_{2}(\underline{x}), g_{3}(\underline{x})\right) \mid \underline{x} \in \mathbb{Z}^{m}\right\} ;
$$

in other words, up to the "bad" solutions, all solutions of the Diophantine equation

$$
\begin{equation*}
f(X, Y, Z)=0 \tag{1}
\end{equation*}
$$

can be parametrized by one triple of integer-valued polynomials.
The suppositions of Theorem 1 imply that for $n \leq 2$ the curve C_{f} has no singular point. For $n=1, C_{f}$ is just a line and the result of Theorem 1 is obvious (even with $\left.g_{i} \in \mathbb{Z}[U, V]\right)$. For $n=2$, we immediately obtain
Corollary 2. Let $f \in \mathbb{Z}[X, Y, Z]$ be an absolutely irreducible quadratic form. Then there exist polynomials $g_{1}, g_{2}, g_{3} \in \operatorname{Int}\left(\mathbb{Z}^{m}\right)$ for some $m \in \mathbb{N}$ such that

$$
\mathcal{L}_{f}=\left\{\left(g_{1}(\underline{x}), g_{2}(\underline{x}), g_{3}(\underline{x})\right) \mid \underline{x} \in \mathbb{Z}^{m}\right\} .
$$

For the proof of Theorem 1 we will use the resultant of polynomials and therefore recall some well-known results on it (cf. [5, Chap. I, §9-10]).
Given polynomials $g, h \in \mathbb{Z}[U, V]$ in the variables U, V, let $\operatorname{Res}_{V}(g, h) \in \mathbb{Z}[U]$ denote the resultant of g, h when considered as polynomials in the variable V over the ring $\mathbb{Z}[U]$, and, vice versa, $\operatorname{Res}_{U}(g, h) \in \mathbb{Z}[V]$ the resultant of g, h as polynomials in U.

Lemma 3. Let $g, h \in \mathbb{Z}[U, V]$ be relatively prime polynomials.
a) Then $\operatorname{Res}_{U}(g, h) \neq 0$ and $\operatorname{Res}_{V}(g, h) \neq 0$, and there exist polynomials $r, s, r^{\prime}, s^{\prime} \in$ $\mathbb{Z}[U, V]$ with

$$
g r+h s=\operatorname{Res}_{U}(g, h) \quad \text { and } \quad g r^{\prime}+h s^{\prime}=\operatorname{Res}_{V}(g, h) .
$$

b) If g and h are homogeneous of degree d_{1} and d_{2}, resp., then $\operatorname{Res}_{U}(g, h)$ and $\operatorname{Res}_{V}(g, h)$ are each homogeneous of degree $d_{1} d_{2}$, and consequently

$$
\operatorname{Res}_{U}(g, h)=a V^{d_{1} d_{2}} \quad \text { and } \quad \operatorname{Res}_{V}(g, h)=b U^{d_{1} d_{2}} \quad \text { with } \quad a, b \in \mathbb{Z} \backslash\{0\}
$$

We will also use the implication $(\mathrm{D}) \Rightarrow(\mathrm{B})$ of the main theorem of [1], which for the sake of completeness we state in the following
Proposition 4. Let $k \in \mathbb{N}$ and suppose that $S \subset \mathbb{Z}^{k}$ is the set of integer k-tuples in the range of a k-tuple of polynomials with rational coefficients, as the variables range through the integers, i.e., there exist $h_{1}, \ldots, h_{k} \in \mathbb{Q}\left[X_{1}, \ldots, X_{r}\right]$ for some $r \in \mathbb{N}$ such that

$$
S=\left\{\left(h_{1}(\underline{x}), \ldots, h_{k}(\underline{x})\right) \mid \underline{x} \in \mathbb{Z}^{r}\right\} \cap \mathbb{Z}^{k}
$$

Then S is parametrizable by a k-tuple of integer-valued polynomials, i.e., there exist $g_{1}, \ldots, g_{k} \in \operatorname{Int}\left(\mathbb{Z}^{m}\right)$ for some $m \in \mathbb{N}$ such that

$$
S=\left\{\left(g_{1}(\underline{x}), \ldots, g_{k}(\underline{x})\right) \mid \underline{x} \in \mathbb{Z}^{m}\right\} .
$$

Proof of Theorem 1. Let f be as in the statement of the theorem. Then there exist homogeneous polynomials $h_{1}, h_{2}, h_{3} \in \mathbb{Q}[U, V]$ such that

$$
(X, Y, Z)=\left(h_{1}(U, V), h_{2}(U, V), h_{3}(U, V)\right)
$$

defines a birational (projective) isomorphism between C_{f} and the projective line. We may assume $h_{1}, h_{2}, h_{3} \in \mathbb{Z}[U, V]$ and $\operatorname{gcd}\left(h_{1}, h_{2}, h_{3}\right)=1$ (see, for instance, [4, Sect. 2]).

For every \mathbb{Q}-rational point $(u: v) \in \mathbb{P}^{1}(\mathbb{Q}),\left(h_{1}(u, v): h_{2}(u, v): h_{3}(u, v)\right)$ is the evaluation of the birational isomorphism at this point. This means that $\left(h_{1}(u, v): h_{2}(u, v)\right.$: $\left.h_{3}(u, v)\right)$ is a \mathbb{Q}-rational point of C_{f} and its local ring is contained in some discrete valuation ring of K of degree 1 . Therefore

$$
\begin{aligned}
\mathcal{L}_{\mathbb{Q}}:=\{ & \left.\left(w h_{1}(u, v), w h_{2}(u, v), w h_{3}(u, v)\right) \mid u, v, w \in \mathbb{Q}\right\}= \\
& \left\{\left(w h_{1}(u, v), w h_{2}(u, v), w h_{3}(u, v)\right) \mid w \in \mathbb{Q}, u, v \in \mathbb{Z} \text { with } \operatorname{gcd}(u, v)=1\right\}
\end{aligned}
$$

is exactly the set of all rational solutions of (1) except for those corresponding to points of C_{f}^{bad}, and $\mathcal{L}_{f} \backslash \mathcal{L}_{f}^{\mathrm{bad}}=\mathcal{L}_{\mathbb{Q}} \cap \mathbb{Z}^{3}$ is just the set of all integral triples of $\mathcal{L}_{\mathbb{Q}}$.

We claim that there exists some $d \in \mathbb{N}$ such that for all $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(u, v)=1$ it follows that

$$
\operatorname{gcd}\left(h_{1}(u, v), h_{2}(u, v), h_{3}(u, v)\right) \mid d .
$$

Let $\operatorname{gcd}\left(h_{1}, h_{2}\right)=t \in \mathbb{Z}[U, V]$ and put $h_{i}=t h_{i}^{\prime}$ with $h_{i}^{\prime} \in \mathbb{Z}[U, V], i=1,2$. Since $h_{1}^{\prime}, h_{2}^{\prime}$ are relatively prime, we obtain that $\operatorname{Res}_{V}\left(h_{1}^{\prime}, h_{2}^{\prime}\right)=a U^{\delta}$ with some $0 \neq a \in \mathbb{Z}$ and $\delta \geq 0$, and polynomials $\rho_{1}, \rho_{2} \in \mathbb{Z}[U, V]$ with $\rho_{1} h_{1}+\rho_{2} h_{2}=a t U^{\delta}$. Since h_{1}, h_{2}, h_{3} were assumed to be relatively prime, $\operatorname{gcd}\left(a t U^{\delta}, h_{3}\right)=c U^{\alpha}$ with $c \in \mathbb{Z}$ and $0 \leq \alpha \leq \delta$. Dividing both at U^{δ} and h_{3} by $c U^{\alpha}$ and applying the same reasoning as above we finally obtain that there are $0 \neq a_{1} \in \mathbb{Z}, \delta_{1} \geq 0$ and polynomials $\varphi_{1}, \varphi_{2}, \varphi_{3} \in \mathbb{Z}[U, V]$ with

$$
\begin{equation*}
\varphi_{1} h_{1}+\varphi_{2} h_{2}+\varphi_{3} h_{3}=a_{1} U^{\delta_{1}} . \tag{2}
\end{equation*}
$$

Using Res_{U} in the same way, we obtain polynomials $\psi_{1}, \psi_{2}, \psi_{3} \in \mathbb{Z}[U, V], 0 \neq a_{2} \in \mathbb{Z}$ and $\delta_{2} \geq 0$ such that

$$
\begin{equation*}
\psi_{1} h_{1}+\psi_{2} h_{2}+\psi_{3} h_{3}=a_{2} V^{\delta_{2}} \tag{3}
\end{equation*}
$$

For any $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(u, v)=1,(2)$ and (3) imply that $\operatorname{gcd}\left(h_{1}(u, v), h_{2}(u, v), h_{3}(u, v)\right)$ divides both $a_{1} u^{\delta_{1}}$ and $a_{2} v^{\delta_{2}}$. It follows that

$$
\operatorname{gcd}\left(h_{1}(u, v), h_{2}(u, v), h_{3}(u, v)\right) \mid \operatorname{lcm}\left(a_{1}, a_{2}\right):=d .
$$

So we obtain polynomials $k_{i}=\frac{1}{d} h_{i} \in \mathbb{Q}[U, V]$ with rational coefficients such that

$$
\mathcal{L}_{f} \backslash \mathcal{L}_{f}^{\mathrm{bad}}=\left\{\left(w k_{1}(u, v), w k_{2}(u, v), w k_{3}(u, v)\right) \mid u, v, w \in \mathbb{Z}\right\} \cap \mathbb{Z}^{3} .
$$

Now we apply Proposition 4, which yields the assertion of Theorem 1.

Remarks. If the integers a_{1}, a_{2} appearing in (2) and (3) in the proof of Theorem 1 are both equal to 1 , then $k_{i}=h_{i} \in \mathbb{Z}[U, V]$ and $\mathcal{L}_{f} \backslash \mathcal{L}_{f}^{\text {bad }}$ can actually be parametrized by a triple of polynomials with integral coefficients (compare Example 2 below).
When applying Proposition 4, we have no information about the number m of variables of the integer-valued polynomials g_{i} appearing in Theorem 1.

Example 1. This example shows that for $n \geq 3$ "bad" singular points may appear. Consider

$$
f=X^{3}+Y^{3}+X^{2} Z-2 Y^{2} Z \in \mathbb{Z}[X, Y, Z]
$$

Then $(0: 0: 1) \in C_{f}$ is a singular point. Only one discrete valuation ring lies over the local ring $R_{(0: 0: 1)}$, and this valuation ring has residue class field isomorphic to $\mathbb{Q}(\sqrt{2})$. A birational (projective) isomorphism between C_{f} and the projective line is given by

$$
(X: Y: Z)=\left(\left(V\left(2 U^{2}-V^{2}\right)\right):\left(U\left(2 U^{2}-V^{2}\right)\right):\left(V^{3}+U^{3}\right)\right)
$$

but there is no \mathbb{Q}-rational point $(u: v) \in \mathbb{P}^{1}(\mathbb{Q})$ corrsponding to the singular point $(0: 0: 1)$. Indeed, the corresponding point $(u: v)=(1: \sqrt{2})$ is only defined over $\mathbb{Q}(\sqrt{2})$.

Example 2. In contrast to the Pythagorean triples (corresponding to the unit circle, see [2]), we know that for the equilateral hyperbola the set \mathcal{L}_{f} can be parametrized by a single triple of polynomials with integer coefficients. Let

$$
f=X Y-Z^{2} \in \mathbb{Z}[X, Y, Z]
$$

All \mathbb{Q}-rational points of C_{f} are given by $\left(u^{2}: v^{2}: u v\right)$ with $(u: v) \in \mathbb{P}^{1}(\mathbb{Q})$. If $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(u, v)=1$ then also $\operatorname{gcd}\left(u^{2}, v^{2}, u v\right)=1$. So the set of all integral solutions of $X Y-Z^{2}=0$ is given by

$$
\left\{\left(u^{2} w, v^{2} w, u v w\right) \mid u, v, w \in \mathbb{Z}\right\}
$$

References

[1] S. Frisch, Remarks on polynomial parametrization of sets of integer points, Comm. Algebra (to appear).
[2] S. Frisch and L. Vaserstein, Parametrization of Pythagorean triples by a single triple of polynomials, J. Pure Appl. Algebra 212 (2008), 271-274.
[3] E. Kunz, Introduction to Plane Algebraic Curves, Birkhäuser, 2005.
[4] D. Poulakis and E. Voskos, Solving genus zero Diophantine equations with at most two infinite valuations, J. Symbolic Computation 33 (2002), 479-491.
[5] R.J. Walker, Algebraic Curves, Springer, 1978.

Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, AUSTRIA

E-mail address: frisch@blah.math.tu-graz.ac.at
Institut für Mathematik und wissenschaftliches Rechnen, Karl-Franzens-Universität, Heinrichstrasse 36, A-8010 Graz, AUSTRIA

E-mail address: guenter.lettl@uni-graz.at

[^0]: 2000 Mathematics Subject Classification. Primary 11D85, secondary 13F20, 11D41, 14H05.

