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INTEGER-VALUED POLYNOMIALS ON KRULL RINGS

Sophie Frisch

Abstract. If R is a subring of a Krull ring S such that RQ is a valuation ring

for every finite index Q = P ∩ R, P in Spec1(S), we construct polynomials that
map R into the maximal possible (for a monic polynomial of fixed degree) power of

PSP , for all P in Spec1(S) simultaneously. This gives a direct sum decomposition

of Int(R, S), the S-module of polynomials with coefficients in the quotient field of S
that map R into S, and a criterion when Int(R, S) has a regular basis (one consisting

of 1 polynomial of each non-negative degree).

Introduction
If A is an infinite subset of a domain S, we write Int(A,S) for the S-module of
polynomials with coefficients in the quotient field of S that – when acting as a
function by substitution of the variable – map A into S. For Int(S, S), the ring
of integer-valued polynomials on S, we write Int(S). Beyond the fact (known of
old) that the binomial polynomials

(x
n
)

= x(x−1)...(x−n+1)
n! form a basis of the free

Z-module Int(Z), the study of Int(S) originated with Pólya [16] and Ostrowski
[15], who let S be the ring of integers in a number field (their results have been
generalized to Dedekind rings by Cahen [4]). Int(R,S) for R 6= S has only begun
to attract attention more recently [2, 3, 6, 8, 11, 13].

We will treat Pólya’s and Ostrowski’s questions in the case where R 6= S and S
is a Krull ring; in particular the question when Int(R,S) is a free S-module that
admits a regular basis, and the related one of determining the highest power of PSP ,
where P is a height 1 prime ideal of S, that a monic polynomial of fixed degree can
map R into. Following Pólya, we call a sequence of polynomials (gn)n∈N0 regular,
if deg gn = n for all n. One basic connection between a module of polynomials and
the modules of leading coefficients should be kept in mind:

0.1 Lemma. Let R be a unitary subring of a field K, M an R-submodule of K[x],
and In = { leading coefficients of n-th degree polynomials in M } ∪ {0}.
(i) If (gn)n∈N0 is a regular sequence of monic polynomials in K[x] such that

Ingn ⊆M for all n, then M =
∑∞

n=0 Ingn (direct sum).

(ii) A regular set of polynomials in M is an R-basis if and only if the leading
coefficient of the n-th degree polynomial generates In as an R-module.

(iii) M has a regular R-basis if and only if each In is non-zero and cyclic.

Proof. (i) If (gn)n∈N0 is as stated, then
∑∞

n=0 Ingn⊆M and the sum is direct, since
deg(gn) = n makes the gn linearly independent over K. An induction on N = deg f
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shows that f ∈M implies f ∈
∑N

n=0 Ingn. Indeed, for N = 0, f ∈ I0 = g0I0, and if
N > 0 and aN is f ’s leading coefficient, then aN ∈ IN , so h = f − aNgN ∈ M and
h ∈

∑N−1
n=0 Ingn by induction hypothesis. (ii) and (iii) are easy. �

1. Polynomials mapping a Set into a Discrete Valuation Ring
Throughout section one, v is a discrete valuation on a field K with value-group
Γv = Z and v(0) =∞, and Rv its valuation ring with maximal ideal Mv. In a kind
of generic local regular basis theorem, we will establish the connection (well-known
in special cases) between Int(A,Rv) and the maximal power of Mv that a monic
polynomial of degree n can map A into, for all A⊆K for which this maximum exists
for every n. A subset A of the quotient field of a domain R is called R-fractional if
there exists a d ∈ R \ {0} such that dA ⊆ R.

1.0 Lemma. If R is an integrally closed domain with quotient field L, A ⊆ L and
f non-constant ∈ L[x] then f(A) is R-fractional if and only if A is.

Proof. Let f ∈L[x], deg f = n > 0. If f(A) is R-fractional there is a non-zero d∈R,
with df(a) ∈ R for every a ∈ A. Let c ∈ R \ {0}, such that cf ∈ R[x], and set
g = cdf = cnxn + . . . + c0. For every a ∈ A, g(a) ∈ R implies that cna is integral
over R, therefore cna ∈ R and cnA ⊆ R. The converse is clear. �

Since a set B ⊆ K is Rv-fractional if and only if minb∈B v(b) exists, Lemma 1.0
shows that A being Rv-fractional is necessary and sufficient for mina∈A v(f(a)) to
exist for any non-constant f ∈K[x]. To exclude polynomials identically zero on A,
for which mina∈A v(f(a)) =∞, we need deg f < |A|, so that the conditions on A in
Lemma 1.1 below are necessary.

1.1 Lemma. Let n ∈ N0. If A is an Rv-fractional subset of K with |A| > n, then
max{min

a∈A
v(f(a)) | f monic ∈K[x], deg f = n} exists.

Proof. The case n = 0 is trivial; so let n > 0 and m∈N such that A is not contained
in any union of n cosets of Mm

v in K. Such an m exists, since n < |A| and by
the Krull Intersection Theorem

⋂
m∈N Mm

v = (0). We show that for every monic
f ∈K[x] of degree n there exists an a0 ∈ A with v(f(a0)) < nm (and consequently
max{mina∈A v(f(a)) | f monic ∈K[x], deg f = n} < nm).

Let v′ be an extension of v to the splitting field of f over K, Rv′ its valuation-ring
with maximal ideal Mv′ , and e = [Γv′ : Γv]. A is not contained in any union of n
cosets of Mv′

me in K ′. Pick an a0 ∈ A that is not in u + Mv′
me for any root u of

f in K ′, then v(f(a0)) = v′(f(a0)) =
∑n

i=1 v′(a0 − ui) < nm. �

1.2 Theorem. Let A be an infinite, Rv-fractional subset of K. For n ∈ N0 set
γv,A(n) = max{min

a∈A
v(f(a)) | f monic ∈K[x], deg f = n}.

(i) Mv
−γv,A(n) = {leading coefficients of degree n polynomials in Int(A,Rv)}∪{0}

(ii) A regular basis of Int(A,Rv) is given by (cngn)n∈N0 , with gn ∈ K[x] monic,
deg gn =n, and cn ∈K, such that min

a∈A
v(gn(a))= γv,A(n) and v(cn)=−γv,A(n).

Proof. Let In,v ={leading coefficients of degree n polynomials in Int(A,Rv)}∪{0}.
The leading coefficient cn of any n-th degree polynomial in Int(A,Rv) must satisfy
v(cn)≥−γv,A(n), so In,v⊆Mv

−γv,A(n). Now, for n∈N0, let gn be monic of degree n
in K[x] with mina∈A v(gn(a)) = γv,A(n) (such things exist by dint of Lemma 1.1)
then Mv

−γv,A(n)gn ⊆ Int(A,Rv), so Mv
−γv,A(n) ⊆ In,v. This shows (i) and also that
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In,vgn ⊆ Int(A,Rv) for all n ∈ N0. (ii) follows by Lemma 0.1 and the fact that
Mv

−γv,A(n) = cnRv for every cn ∈K with v(cn) = −γv,A(n). �

Before deriving a formula for max{mina∈A v(f(a)) | f monic ∈K[x], deg f = n},
when A is a subring of Rv, we check that the other plausible way of normalizing
the polynomials would yield the same value. We also see that polynomials mapping
A ⊆ Rv into the maximal possible power of Mv can be chosen to split with their
roots in any set that Mv-adically approximates A (for instance in A itself, or, if Rv

is the localization of a ring R at a prime ideal of finite index, in R). We need a
lemma from [7] (but include the proof).

1.3 Lemma. Let f ∈ Rv[x], not all of whose coefficients lie in Mv, split over K,
as f(x) = d(x− b1) · . . . · (x− bm) · (x− c1) · . . . · (x− cl) with v(bi) < 0, v(ci) ≥ 0,
and put f+(x) = (x− c1) · . . . · (x− cl). Then for all r ∈ Rv v(f(r)) = v(f+(r)).

Proof. For r ∈ Rv v(r − bi) = v(bi) and so v(f(r)) = v(d) +
∑m

i=1 v(bi) + v(f+(r));
we show v(d) =−

∑m
j=1 v(bi). Consider d−1f(x) = xn + an−1x

n−1 + . . . + a0. Since
f ∈ Rv[x] \Mv[x], v(d) = −min0≤k≤n v(ak). But ak is the elementary symmetric
polynomial of degree n − k in the bi and ci, so the minimal valuation is attained
by v(an−m) =

∑m
i=1 v(bi). �

1.4 Proposition. Let A ⊆ Rv and 0 ≤ n < |A|, then α and γ below are equal:

α = max{min
a∈A

v(f(a)) | f ∈ Rv[x] \Mv[x], deg f = n},

γ = max{min
a∈A

v(f(a)) | f monic ∈K[x], deg f = n}.

If, furthermore, B⊆Rv, such that B intersects every coset of Mv
l that A intersects,

for all l ∈ N, then δ below is equal to α and γ; and so is β, if B is also a ring:

β = max{min
a∈A

v(f(a)) | f ∈ B[x] \ (Mv ∩B)[x], deg f = n},

δ = max{min
a∈A

v(f(a)) | f(x) =
∏n

i=1(x− di), di ∈ B}.

Proof. Let B be a fixed subset of Rv that intersects every coset of every power of
Mv that A intersects (e.g. B = Rv, when only interested in α and γ). For n = 0 all
four expressions are equal to 0; now consider a fixed n> 0. Clearly δ≤γ and, if B is
a ring, δ≤ β ≤ α. Also γ ≤ α, because, given f monic in K[x], there exists a d∈Rv

such that df = g∈Rv[x]\Mv[x] and for all a∈A v(g(a))= v(d)+v(f(a))≥ v(f(a)),
and so mina∈A v(g(a)) ≥mina∈A v(f(a)).

To show α ≤ δ, we fix f ∈ Rv[x] \ Mv[x] of degree n and construct a monic
g that splits with roots in B such that v(g(a)) ≥ mina∈A v(f(a)) for all a ∈ A.
Let v′ be an extension of v to the splitting field of f over K. For all a ∈ A,
v′(f(a)) = v′(f+(a)) with f+(x) =

∏l
i=1(x− ci), where the ci are the roots of f in

Rv′ , by Lemma 1.3. Put s = mina∈A v′(f+(a)). We replace each ci by a di ∈ B

chosen such that
∏l

i=1(x − di) = h(x) satisfies: for all a ∈ A v′(h(a)) ≥ s. If
(ci + Mk

v′) ∩A 6= ∅ for all k ∈ N, we pick di out of (ci + Ms
v′) ∩B; otherwise out of

(ci + Mk
v′)∩B with k maximal such that (ci + Mk

v′)∩A 6= ∅. Since the intersection
of a residue class of Mk

v′ in Rv′ with Rv is either empty or an entire residue class of
a power of Mv in Rv, and B intersects all of these that A intersects, it is possible
to find such di in B. Now for every a ∈A either v′(a− di)≥ v′(a− ci) for all i and
so v′(h(a)) ≥ v′(f+(a)) ≥ s, or v′(a− di) ≥ s for some i and hence v′(h(a)) ≥ s. To
get a polynomial of degree n, set g(x) = (x− d0)n−lh(x), d0 ∈ B. �
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2. Polynomials mapping into a maximal Power of Mv

If R is an infinite subring of a discrete valuation ring Rv, we will construct poly-
nomials gn(x) = (x− a1) . . . (x− an) that map R into the maximal possible (for a
monic polynomial of degree n) power of Mv, by finding sequences (ai) in R that
show a nice distribution among the cosets of Mn

v ∩R, to serve as roots.
This generalizes a procedure of Pólya [16] (also used by Gunji and McQuillan

[12, 14], Cahen [4] and others) for the special case where Rv = RQ, Q being a prime
ideal of index q in R such that RQ is a discrete valuation ring: Pick π ∈ Q \Q2

and a complete set of residues r0, ..., rq−1 of Q in R and define an =
∑

i≥0 rciπ
i, if

n =
∑

i≥0 ciq
i is the q-adic expansion of n. The resulting polynomials map R into

the highest possible power of Q and can be used to give a regular basis of Int(Rv)
(most clearly stated in [14]). Gilmer [10] has remarked that the construction even
works for Int(D), D a quasi-local ring with principal maximal ideal.

The I-sequences below are defined for any commutative ring R. All sequences
are indexed by an initial segment of N or N0. Quantifiers over indices of such a
sequence are assumed to range over precisely the index-set.

2.0 Definition. For a set I of ideals in a commutative ring R we define an
I-sequence in R to be a sequence (an) of elements in R with the property

∀I ∈ I ∀n, m an ≡ am mod I ⇐⇒ [R : I] |n−m.

We define a homogeneous I-sequence to be one with the additional property

∀I ∈ I ∀n ≥ 1 an ∈ I ⇐⇒ [R : I] |n.

(Any infinite [R : I] we regard as dividing 0, but no other integer.) Note that
a1, a2, .. is a homogeneous I-sequence if and only if 0=a0, a1, a2, .. is an I-sequence.

2.1 Proposition. Let I = {In |n ∈ N} be a descending chain of ideals in a
commutative ring R, then there exists an infinite homogeneous I-sequence in R.

Proof. Put I0 = R. For k ≥ 0, if [Ik: Ik+1] is finite, let {a(k)
j | 0 ≤ j < [Ik: Ik+1]}

be a system of representatives of Ik : Ik+1 with a
(k)
0 = 0, otherwise let (a(k)

j )j∈N0

be a sequence in Ik of elements pairwise incongruent mod Ik+1, with a
(k)
0 = 0. If

IN ∈ I with [R : IN ] finite, then every n < [R : IN ] has a unique representation
n =

∑N−1
k=0 jk[R : Ik] with 0 ≤ jk < [Ik: Ik+1], and we set an =

∑N−1
k=0 a

(k)
jk

. If the
indices of ideals in I get arbitrarily large while remaining finite, this defines our
I-sequence inductively. Otherwise there exists IN ∈ I of maximal finite index such
that either [IN : IN+1] is infinite or Im = IN for m ≥ N . Define an for n < [R : IN ]
as above. Then, in the first case, set am = aq

(N) + ar for m = q [R : IN ] + r with
0 ≤ r < [R : IN ], and am = ar in the second. �

2.2 Facts.

(i) For I ∈ I of finite index in R, any [R : I] consecutive terms of an I-sequence
form a complete set of representatives of R mod I.

(ii) If (ai)n
i=1 is an I-sequence in R then (r − ai)n

i=1 is an I-sequence for every
r ∈ R and (an − an−i)n−1

i=0 is a homogeneous I-sequence.

The following lemma will be needed for globalization.
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2.3 Lemma. If a1, ..., al is an I-sequence for a chain of ideals I, J ∈ I with
[R : J ] > l, and b1, ..., bl ∈ R such that bn ≡ an mod J for 1 ≤ n ≤ l, then (bn) is
also an I-sequence, and homogeneous if (an) is.

Proof. Let I ∈ I and 1 ≤ n, m ≤ l. First suppose n ≡ m mod [R : I]. Then n = m
or [R : I] < l. In the latter case J ⊆ I, so bn ≡ an ≡ am ≡ bm mod I. Now suppose
n 6≡m mod [R : I]. Either J ⊆ I or I ⊆ J . If J ⊆ I then bn ≡ an 6≡ am ≡ bm mod I.
If I ⊆ J then bn ≡ an 6≡ am ≡ bm mod J (because 0 6= n − m < [R : J ]), hence
bn 6≡ bm mod I. Homogeneity is shown similarly. �

From now on, R is always an infinite subring of a discrete valuation ring Rv.
Note that the definitions of αv,R(n) and v-sequence below depend only on Mv

and R, and thus not distinguish between equivalent valuations.

2.4 Definition. A v-sequence for R is a {Mn
v ∩R | n∈N}-sequence in R. In other

words, (an) is a v-sequence for R if and only if for all n ∈ N and all i, j,

ai − aj ∈Mv
n ⇐⇒ [R : Mv

n ∩R] | i− j

and a homogeneous v-sequence if in addition, for all n ∈ N and all j ≥ 1,

aj ∈Mv
n ⇐⇒ [R : Mv

n ∩R] | j .

If [R : Mv
n ∩ R] is infinite, distinct elements of a v-sequence must be incongruent

mod Mv
n∩R. Proposition 2.1 guarantees the existence of an infinite homogeneous

v-sequence for every infinite subring R of every discrete valuation ring Rv.

2.5 Definition. For n ∈ N0, R an infinite subring of Rv and q ∈ N, let

αv,R(n) =
∑
j≥1

[
n

[R : Mv
j ∩R]

]
and αq(n) =

∑
j≥1

[
n

qj

]
.

Infinite indices are allowed; n
∞ = 0. Since R is infinite, αv,R(n) is always a

finite number. We will frequently use the fact that αv,R(n) > 0 if and only if
n ≥ [R : Mv ∩ R]. If Q is a prime ideal in a domain D, such that DQ is a discrete
valuation ring, we write vQ for the corresponding valuation with value group Z.

2.6 Facts.

(i) If Q is a prime ideal of finite index q in R such that RQ is a discrete valuation
ring, then αvQ,R(n) = αq(n) for all n.

(ii) If v is a discrete valuation, R an infinite subring of Rv and v′ an extension of
v with [Γv′ : Γv] = e finite, then αv′,R(n) = e · αv,R(n) for all n.

Proof. (i) Since Q is maximal, (QRQ)n ∩ R = Qn for all n. Using the fact that Q
contains a generator of QRQ one sees that [R : Qn] = [RQ : (QRQ)n] = qn for all n.
(ii) For k ∈ N, Mv′

k ∩ R = (Mv′
k ∩ Rv) ∩ R = Mv

d k
e e ∩ R, where dxe denotes the

smallest integer greater or equal x. Each number
[

n
[R:Mv

j∩R]

]
appears e times, as[

n
[R:Mv′

k∩R]

]
for k = (j − 1)e + 1, . . . , je, in the sum for αv′,R(n). �

In the remainder of section two, v is assumed to have value-group Z.
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2.7 Lemma. Let (ai)n+1
i=1 , (bi)n

i=1 and (ci)n
i=1 be v-sequences for R, and (ci)n

i=1

homogeneous, then

(a) v(c1 · . . . · cn) = αv,R(n) ≤ v(b1 · . . . · bn) ≤ αv,R(n) + max1≤i≤n v(bi),

(b) v
( ∏n

i=1(an+1 − ai)
)
= αv,R(n) ≤ v

( ∏n
i=1(r − bi)

)
for all r ∈ R.

Proof. v(c1 · . . . · cn) =
∑

j≥1

∣∣{i | 1 ≤ i ≤ n, v(ci) ≥ j}
∣∣ and similarly for the bi.

Since for finite index Mv
j ∩R every [R : Mv

j ∩R] successive terms of a v-sequence
form a complete residue system of R mod Mv

j ∩R, we have ∀j ∈ N

∣∣∣{i | v(ci) ≥ j}
∣∣∣ =

[
n

[R : Mv
j ∩R]

]
≤

∣∣∣{i | v(bi) ≥ j}
∣∣∣ ≤ [

n

[R : Mv
j ∩R]

]
+ 1

This implies (a) (and, since the 1 on the right can only occur if [R : Mv
j ∩R] 6 |n,

v(b1 · . . . · bn) ≤ αv,R(n) + max1≤i≤n v(bi)−max{j | [R : Mv
j ∩R] divides n}). By

Fact 2.2 (ii) about I-sequences, (b) is a special case of (a). �

2.8 Theorem. Let R be an infinite subring of Rv. An Rv-basis of Int(R,Rv) is
given by

f0 = 1 and fn(x) =
∏n

i=1(x− ai)∏n
i=1(an+1 − ai)

(n ≥ 1),

where (an)∞n=1 is a v-sequence for R.

Proof. An infinite v-sequence (an)∞n=1 in R exists by Proposition 2.1 applied to
{Mv

n ∩ R |n ∈ N}. The fn, being a K-basis of K[x], are free generators of the
Rv-module they generate in K[x], call this module F . Since by Lemma 2.7 every
fn maps R to Rv, F ⊆ Int(R,Rv). For the reverse inclusion we show the stronger
statement that Int(A,Rv) ⊆ F , where A = {an |n ∈ N}. Let f ∈ Int(A,Rv),
f =

∑N
j=0 ljfj with lj∈K. We show inductively that the lj are in Rv. l0=f(a1)∈Rv.

The induction hypothesis is lj ∈ Rv for 0 ≤ j < n. Using this and the facts that
fj(ai) = 0 for j ≥ i and fj(aj+1) = 1, we see that f(an+1) = ln +

∑n−1
j=0 ljfj(an+1).

Since fj(ai) ∈ Rv for all i, j (by Lemma 2.7) and f ∈ Int(A,Rv), the sum on the
right as well as f(an+1) is in Rv, therefore ln ∈ Rv. �

Remark. For an infinite subring R of Rv and A ⊆ R, the proof of Theorem 2.8
shows that if A contains an infinite v-sequence for R, then Int(A,Rv) = Int(R,Rv).
The converse holds, too (the criterion for Int(A,Rv) = Int(R,Rv) in [7] is easily
seen to be equivalent to A containing an infinite v-sequence for R).

Corollary 1. αv,R(n) = max{min
r∈R

v(f(r)) | f monic ∈ K[x], deg f = n} and

M
−αv,R(n)
v = { leading coefficients of n-th degree polynomials in Int(R,Rv) } ∪ {0}.

Proof. The second statement can be read off the theorem using Lemma 2.7 (b), the
first one then follows by Theorem 1.2. �

Pólya’s Satz IV [16] is a special case: if P is a prime ideal in a domain R such
that RP is a discrete valuation ring and [R : P ] = q, then (by Proposition 1.4 with
B = R and Fact 2.6 i) αq(n) = max{minr∈R vP (f(r)) | f ∈ R[x] \ P [x], deg f = n}.
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Corollary 2. Let gn(x) =
∏n

i=1(x− ai
(n)), where (ai

(n))n
i=1 is a v-sequence for R

when n ≥ [R : Mv ∩ R], and let gn be any monic polynomial in Rv[x] of degree n
for 0 ≤ n < [R : Mv ∩ R]. Further let, for n ∈ N0, cn ∈ K with v(cn) = −αv,R(n).
Then (cngn)n∈N0 is an Rv-basis of Int(R,Rv).

Proof. For all n∈N0, r∈R, v(gn(r))≥αv,R(n) (by Lemma 2.7, when n≥ [R :Mv∩R],
and because gn ∈ Rv[x] and αv,R(n) = 0 otherwise). By the maximality of αv,R(n)
(Corollary 1), minr∈R v(gn(r)) = αv,R(n). Therefore (cngn)n∈N0 is an Rv-basis of
Int(R,Rv) by Corollary 1 and Theorem 1.2 (ii). �

3. Polynomials mapping a subring into a Krull Ring

Notation. Let S be a domain with quotient field K, such that S =
⋂

v∈V Rv, V a set
of discrete valuations (with value-group Z) on K; and R an infinite subring of S.
We put In = {leading coefficients of n-th degree polynomials in Int(R,S)} ∪ {0}
and introduce names for recurring additional conditions:

(F) ∀ q ∈ N {Q E R | [R : Q] = q and Q = Mv ∩R for some v ∈ V} is a finite set.

(C) For every prime ideal Q of finite index in R, the set of Mv
n ∩ R with n ∈ N,

v ∈ V, and Mv ∩R = Q, if not empty, forms a descending chain of ideals.

Note that (C) holds naturally in two cases: when there is only one Mv such that
Mv ∩R = Q, and when every Mv

n ∩R with Mv ∩R = Q is a power of Q.

3.0 Lemma. (Cahen [4]) If R is an infinite subring of a Krull ring S and q ∈ N,
then S has at most finitely many height 1 prime ideals P with [R : P ∩R] = q.

Proof. There exists r ∈ R with rq − r 6= 0. For every P with Q = R ∩ P of index q
in R, rq − r ∈ Q ⊆ P , so the statement follows by the definition of Krull ring. �

3.1 Lemma. Let v ∈ V such that Mv ∩R = Q 6= (0) and L the quotient field of R.
If RQ is a valuation ring, then it is a discrete valuation ring and RQ = Rv ∩ L.
If Q is also a maximal ideal then, for every n ∈ N, Mn

v ∩R is a power of Q.

Proof. For any valuation ring V with quotient field L and maximal ideal M we have
L\V ={r∈L∗ | r−1∈M}. Put Rv∩L=Rw and Mv∩L=Mw, then Rw and RQ are
valuation rings with quotient field L and maximal ideals Mw and QRQ, respectively.
R ⊆ Rw and Mw ∩R = Mv ∩R = Q imply RQ ⊆ Rw and also QRQ ⊆Mw. By the
latter inclusion L\RQ = {r ∈L∗ | r−1 ∈QRQ}⊆ {r ∈L∗ | r−1 ∈Mw}= L\Rw. This
shows RQ = Rw = Rv ∩ L, so RQ is a discrete valuation ring and every Mn

v ∩ RQ

is a power of QRQ. If Q is maximal, then (QRQ)k ∩ R = Qk for all k, so Mn
v ∩ R

is a power of Q. �

3.2 Lemma. (C) implies: For every finite set M of prime ideals of finite index
in R and every m ∈ N, there exists a sequence (ai)m

i=0 in R that is a homogeneous
v-sequence for all v in V with Mv ∩R ∈M, simultaneously.

Proof. For every Q ∈ M, IQ = {Mv
n ∩ R | v ∈ V, n ∈ N, Mv ∩ R = Q} (if not

empty) is a descending chain by (C), so there exists a homogeneous IQ-sequence
(ai

(Q))∞i=0 in R by Proposition 2.1. For each Q with IQ 6= ∅ let IQ be an element of
IQ with [R : IQ] > m. IQ = Mv

n ∩ R for some v and n and therefore contains Qn.
Since different Q are co-prime, there exists, by the Chinese Remainder Theorem, a
sequence (ai)m

i=0 in R that is congruent to (ai
(Q))m

i=0 modulo IQ for all Q ∈M. By
Lemma 2.3, this a homogeneous IQ-sequence for all Q ∈ M, i.e., a homogeneous
v-sequence for all v with Mv ∩R ∈M. �
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From Lemma 3.0, Lemma 3.1 and the fact that the powers of an ideal Q form
a descending sequence, we conclude that the hypothesis of Theorem 3.4 below is
satisfied in at least one natural setting:

3.3 Fact. If S is a Krull ring, V = {vP |P ∈ Spec1(S)}, and R an infinite subring
such that RQ is a valuation ring for every finite index Q = P ∩ R, P ∈ Spec1(S),
then (C) and (F) both hold.

In the following theorem, the case where S is a Dedekind ring and R = S is due
to Cahen [4] (also pertinent: [5]).

3.4 Theorem. Let R be an infinite subring of S =
⋂

v∈V Rv. If (C) and (F) hold,
then

In =
⋂

v∈V
M−αv,R(n)

v (n ∈ N0)

and there exists a regular sequence of monic polynomials (gn) in R[x] such that

Int(R,S) =
∑

n≥0
Ingn,

namely, gn(x) =
∏n

i=1(x− ai
(n)), where (ai

(n))n
i=1 is a simultaneous v-sequence for

all v ∈ V with [R : Mv ∩R] ≤ n.

Proof. Int(R,
⋂

v∈V Rv) =
⋂

v∈V Int(R,Rv), therefore In ⊆
⋂

v∈V Mv
−αv,R(n) (by

Theorem 2.8, Corollary 1). For the reverse inclusion, let c ∈
⋂

v∈V M
−αv,R(n)
v . Set

Vn = {v ∈ V | αv,R(n) > 0} = {v ∈ V | [R : Mv ∩ R] ≤ n} then {Mv ∩ R | v ∈ Vn}
is finite by (F). Let (ai

(n))n
i=1 in R be a homogeneous v-sequence for all v ∈ Vn

simultaneously (which exists by Lemma 3.2) and gn(x) =
∏n

i=1(x − ai
(n)). Then

minr∈R v(g(r)) ≥ αv,R(n) for all v ∈ V (by Lemma 2.7 when v ∈ Vn, and because
αv,R(n) = 0 and gn ∈ R[x] otherwise) which means cg(x) ∈ Int(R,

⋂
v∈V Rv) and

hence c ∈ In. This completes the proof of the first statement and also shows, for
all n ≥ 0, that Ingn ⊆ Int(R,

⋂
v∈V Rv), so the second follows by Lemma 0.1. �

From now on, S is a Krull ring. By convention, the empty intersection or product
of ideals of S equals S. We denote the set of height 1 prime ideals of S by Spec1(S)
or P. If P ∈ P, we write αP,R for αvP ,R and, if j ∈ N0, P (j) for (PSP )j ∩ S. With
this notation we have, for n ∈ N0 and P ∈ P:

αP,R(n) =
∑
j≥1

[
n

[R : P (j) ∩R]

]
.

3.5 Lemma. Let S be a Krull ring and V = {vP | P ∈ P}. If (C) holds, then
Int(R,S) has a regular basis ⇐⇒

⋂
P∈P

[R:P∩R]≤n
P (αP,R(n)) is principal for all n.

Proof. αP,R(n) 6= 0 if and only if [R : P ∩ R] ≤ n. Since (F) holds by Lemma 3.0,
this only happens for finitely many P for each n. If {aP |P ∈ P} is a set of
integers, only finitely many of them non-zero, then

⋂
P∈P (PSP )−aP is principal

if and only if
⋂

P∈P (PSP )aP is, namely if there exists c∈K with vP (c) = aP for all
P ∈ P . If all aP are non-negative then

⋂
P∈P (PSP )aP =

⋂
aP >0 P (aP ). Applied to⋂

P∈P (PSP )−αP,R(n), which is In by Theorem 3.4, with Lemma 0.1 (iii) in mind,
this proves the claim. �
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3.6 Theorem. Let R be an infinite subring of a Krull ring S, P = Spec1(S),
P∗ = {P ∈ P | [R : P ∩R] finite} and Q = {R ∩ P | P ∈ P∗}. If RQ is a valuation
ring for all Q ∈ Q, then RQ is a discrete valuation ring for all Q ∈ Q and

Int(R,S) has a regular basis ⇐⇒ ∀ q ∈ N
⋂

P∈P
[R:R∩P ]=q

P (eP ) is a principal ideal of S,

where eP is the ramification index of PSP over QRQ, for P ∈ P∗, Q = P ∩R.

Proof. Let Pq ={P ∈P | [R :P∩R]=q}, P ∈Pq, Q=P∩R, L the quotient field of R,
then by Lemma 3.1 RQ =SP ∩L and RQ is a discrete valuation ring. v′P =(1/eP )vP

is equivalent to vP and is an extension of vQ to K with [Γv′P
: ΓvQ

] = eP . By the
Facts 2.6 (ii) and (i), αP,R(n) = αv′P ,R(n) = eP αQ,R(n) = eP αq(n).

If we call left and right side of the claimed equivalence (l) and (r), respectively,
then (l) is equivalent to (l’) ‘∀n

⋂
P∈P

[R:P∩R]≤n
P (αP,R(n)) is principal’ by Lemma 3.5

(whose condition (C) holds by Fact 3.3). We know that
⋂

P∈P
[R:P∩R]≤n

P (αP,R(n)) =⋂
q≤n

⋂
P∈Pq

P (eP αq(n)). The latter is clearly principal provided all
⋂

P∈Pq
P (eP )

are; thus (r) ⇒ (l’).
For (l’) ⇒ (r), suppose

⋂
q≤n

⋂
P∈Pq

P (eP αq(n)) = snS for all n. We see that
sqS =

⋂
P∈Pq

P (eP ) ∩
⋂

l<q

⋂
P∈Pl

P (eP αl(q)), because αq(q) = 1. This allows an
induction on q: from the formula for sqS we conclude that

⋂
P∈Pq

P (eP ) is principal
if

⋂
P∈Pl

P (eP ) is principal for all l < q. �

Corollary 1. If R ⊆ S is an extension of Krull rings such that ht(P ∩R) ≤ 1 for
all height 1 prime ideals P of S then

Int(R,S) has a regular basis ⇐⇒ ∀ q ∈ N
⋂

Q∈Spec1(R)
[R:Q]=q

div(QS) is principal,

where div(QS) means the smallest divisorial ideal containing QS.

Proof. If R ⊆ S is an extension of Krull rings with the stated property and Q is in
Spec1(R), then div(QS) =

⋂
P∈Spec1(S)

P∩R=Q

P (eP ), where eP = e(P |Q) is the ramification

index of PSP over QRQ [1, p183]. �

In particular, if R ⊆ S is an extension of Dedekind rings, then

Int(R,S) has a regular basis ⇐⇒ ∀ q ∈ N
∏

Q∈Spec(R)
[R:Q]=q

QS is principal.

A different specialization gives Ostrowski’s criterion [15]. If S is a Krull ring,

Int(S) has a regular basis ⇐⇒ ∀ q ∈ N
∏

P∈Spec1(S)
[S:P ]=q

P is principal.

When a regular basis exists, we can give a fairly explicit description of one. (For
Int(S), S a Dedekind ring, there also is a different construction by Gerboud [9].)
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Corollary 2. In the situation of Theorem 3.6, if
⋂

P∈P
[R:P∩R]=q

P (eP ) = cqS (q ∈ N)

then a regular basis of Int(R,S) is given by f0 = 1,

fn(x) =
∏
q≤n

c−αq(n)
q

n∏
i=1

(x− ai
(n)) (n ∈ N) ,

where (ai
(n))n

i=1 ⊆ R is a vP -sequence for all P ∈ P with [R : P ∩R] ≤ n.

Proof. vP (c−αq(n)
q ) = −eP αq(n) = −αP,R(n) for the P ∈ P with [R : P ∩ R] = q,

and zero for all other P ∈ P, so vP (
∏

q≤n c
−αq(n)
q ) = −αP,R(n) for all P ∈ P (since

αP,R(n) = 0 if n < [R : P ∩R]). Therefore the fn are an SP -basis of Int(R,SP ) for
all P ∈ P simultaneously, by Theorem 2.8, Corollary 2. �
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Sér. 95 (1971), 295–304.
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[16] G. Pólya, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math.
149 (1919), 97–116.

Institut für Mathematik C, Technische Universität Graz, Kopernikusgasse 24,

A-8010 Graz, Austria
e-mail: frisch@blah.math.tu-graz.ac.at


