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INTEGER-VALUED POLYNOMIALS ON KRULL RINGS

SopPHIE FRISCH

ABSTRACT. If R is a subring of a Krull ring S such that Rg is a valuation ring
for every finite index Q@ = PN R, P in Spec!(S), we construct polynomials that
map R into the maximal possible (for a monic polynomial of fixed degree) power of
PSp, for all P in Spec!(S) simultaneously. This gives a direct sum decomposition
of Int(R, S), the S-module of polynomials with coefficients in the quotient field of S
that map R into S, and a criterion when Int(R, S) has a regular basis (one consisting
of 1 polynomial of each non-negative degree).

INTRODUCTION
If A is an infinite subset of a domain S, we write Int(A, S) for the S-module of
polynomials with coefficients in the quotient field of S that — when acting as a
function by substitution of the variable — map A into S. For Int(S,S), the ring
of integer-valued polynomials on S, we write Int(S). Beyond the fact (known of

old) that the binomial polynomials (%) = m(x_l)"r'f!x_n“) form a basis of the free
Z-module Int(Z), the study of Int(S) originated with Pélya [16] and Ostrowski
[15], who let S be the ring of integers in a number field (their results have been
generalized to Dedekind rings by Cahen [4]). Int(R,S) for R # S has only begun
to attract attention more recently [2, 3, 6, 8, 11, 13].

We will treat Pdlya’s and Ostrowski’s questions in the case where R # S and S
is a Krull ring; in particular the question when Int(R,S) is a free S-module that
admits a regular basis, and the related one of determining the highest power of PSp,
where P is a height 1 prime ideal of S, that a monic polynomial of fixed degree can
map R into. Following Pdlya, we call a sequence of polynomials (g, )nen, regular,
if deg g,, = n for all n. One basic connection between a module of polynomials and
the modules of leading coefficients should be kept in mind:

0.1 Lemma. Let R be a unitary subring of a field K, M an R-submodule of K [x],
and I,, = { leading coefficients of n-th degree polynomials in M} U {0}.

(i) If (gn)nen, 5 a regular sequence of monic polynomials in K[z] such that
L,g, C M for alln, then M =%  I,g, (direct sum).

(ii) A regular set of polynomials in M is an R-basis if and only if the leading
coefficient of the n-th degree polynomial generates I, as an R-module.

(iii) M has a reqular R-basis if and only if each I,, is non-zero and cyclic.

Proof. (i) If (gn)nen, is as stated, then Y I,,g, € M and the sum is direct, since
deg(gn) = n makes the g, linearly independent over K. An induction on N =deg f
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shows that f € M implies f € mev:o 1,9, Indeed, for N =0, f € Iy = golp, and if
N >0 and ay is f’s leading coefficient, then ay € In, so h=f —anxgn € M and
h e Zi::ol I,,g,, by induction hypothesis. (ii) and (iii) are easy. [J

1. POLYNOMIALS MAPPING A SET INTO A DISCRETE VALUATION RING
Throughout section one, v is a discrete valuation on a field K with value-group
I'y =Z and v(0) = o0, and R, its valuation ring with maximal ideal M,. In a kind
of generic local regular basis theorem, we will establish the connection (well-known
in special cases) between Int(A, R,) and the maximal power of M, that a monic
polynomial of degree n can map A into, for all A C K for which this maximum exists
for every n. A subset A of the quotient field of a domain R is called R-fractional if
there exists a d € R\ {0} such that dA C R.

1.0 Lemma. If R is an integrally closed domain with quotient field L, A C L and
f non-constant € L[z] then f(A) is R-fractional if and only if A is.

Proof. Let f € L[x], deg f =n>0. If f(A) is R-fractional there is a non-zero d € R,
with df(a) € R for every a € A. Let ¢ € R\ {0}, such that ¢f € R[z], and set
g=cdf =c,z" + ...+ co. For every a € A, g(a) € R implies that c¢,a is integral
over R, therefore c,a € R and ¢, A C R. The converse is clear. []

Since a set B C K is R,-fractional if and only if minyep v(b) exists, Lemma 1.0
shows that A being R,-fractional is necessary and sufficient for min,c 4 v(f(a)) to
exist for any non-constant f € K|z]|. To exclude polynomials identically zero on A,
for which minge 4 v(f(a)) = oo, we need deg f < |A|, so that the conditions on A in
Lemma 1.1 below are necessary.

1.1 Lemma. Let n € Ng. If A is an R,-fractional subset of K with |A| > n, then
max{meig v(f(a)) | f monic € K[z|, deg f =n} exists.

Proof. The case n =0 is trivial; so let n >0 and m € N such that A is not contained
in any union of n cosets of M in K. Such an m exists, since n < |A| and by
the Krull Intersection Theorem (7, .y M;" = (0). We show that for every monic
f € Klz] of degree n there exists an ag € A with v(f(ag)) < nm (and consequently
max{minge4 v(f(a))| f monic € K[z, deg f =n} < nm).

Let v" be an extension of v to the splitting field of f over K, R, its valuation-ring
with maximal ideal M, , and e = [[',, : I';]. A is not contained in any union of n
cosets of M,,¢ in K'. Pick an ag € A that is not in u + M,/ "¢ for any root u of
fin K, then v(f(ao)) = v'(f(ao)) = 3i—, v'(ap — u;) <nm. O

1.2 Theorem. Let A be an infinite, R,-fractional subset of K. For n € Ny set
Yo, A(N) = max{mig v(f(a)) | f monic € K[z, deg f =n}.
ac

(i) M, 4™ = {leading coefficients of degree n polynomials in Int(A, R,)}U{0}

(ii) A regular basis of Int(A, R,) is given by (¢ngn)nen,, with g, € K[x] monic,
deg g, =n, and ¢, € K, such that mig v(gn(a)) =7v,4(n) and v(c,) =—vu,a(n).
ac

Proof. Let I, , ={leading coefficients of degree n polynomials in Int(A, R, )}U{0}.
The leading coefficient ¢,, of any n-th degree polynomial in Int(A, R,) must satisfy
v(cn) > —Yu,4(n), s0 I, , C M, A Now, for n € Ny, let g,, be monic of degree n
in K[z] with min,e 4 v(gn(a)) = 7»,4(n) (such things exist by dint of Lemma 1.1)
then MU*%’A(”)gn ClInt(A, R,), so M, ~veam) C I,, . This shows (i) and also that



INTEGER-VALUED POLYNOMIALS 3

Inwgn € Int(A, R,) for all n € Ny. (ii) follows by Lemma 0.1 and the fact that
M, A = ¢ R for every ¢, € K with v(c,) = —7vp,4(n). O

Before deriving a formula for max{min,c4 v(f(a)) | f monic € K[z|, deg f =n},
when A is a subring of R,, we check that the other plausible way of normalizing
the polynomials would yield the same value. We also see that polynomials mapping
A C R, into the maximal possible power of M, can be chosen to split with their
roots in any set that M,-adically approximates A (for instance in A itself, or, if R,
is the localization of a ring R at a prime ideal of finite index, in R). We need a
lemma from [7] (but include the proof).

1.3 Lemma. Let f € R,[z], not all of whose coefficients lie in M,, split over K,
as f(x)=d(x—b1)...-(x —bpm) - (x—c1) ... (x —¢) with v(b;) <0, v(c;) >0,
and put f,(x)=(x—c1)-...- (x —¢;). Then for allr € R, v(f(r))=v(f.(r)).

Proof. For r € R, v(r —b;) =v(b;) and so v(f(r)) = v(d) + Y it ; v(bi) + v(f(r));
we show v(d) = — > 7", v(b;). Consider d=1f(x)=2" +a,_12" ' +... 4+ ap. Since
f € Rylz] \ My[z], v(d) = —ming<g<n, v(ax). But ai is the elementary symmetric
polynomial of degree n — k in the b; and c¢;, so the minimal valuation is attained
by U(anfm) = z:r;l v(bz) 0

1.4 Proposition. Let AC R, and 0 < n < |A|, then a and y below are equal:
a = max{minv(f(a)) | f € R[z] \ My[z], deg f =n},
v = max{ rréiilv(f(a)) | f monic € K|[z], deg f =n}.

If, furthermore, B C R,,, such that B intersects every coset of M, that A intersects,
for all l € N, then § below is equal to o and ~y; and so is (3, if B is also a ring:

5 = max{mino(f() | f € Bla] \ (M, 1 B)fa], deg f = n},
5 = max{mino(f(a)) | () = [Ty (@ — i), di € B},

Proof. Let B be a fixed subset of R, that intersects every coset of every power of
M, that A intersects (e.g. B = R,, when only interested in o and ). For n =0 all
four expressions are equal to 0; now consider a fixed n > 0. Clearly § <+ and, if B is
aring, § < <a. Also v < a, because, given f monic in K [x], there exists a d € R,
such that df =g € R,[z]\ M,[z] and for all a € A v(g(a)) =v(d)+v(f(a)) >v(f(a)),
and so minge 4 v(g(a)) > mingea v(f(a)).

To show a < 4, we fix f € R,[x] \ M,[x] of degree n and construct a monic
g that splits with roots in B such that v(g(a)) > minge 4 v(f(a)) for all a € A.
Let v" be an extension of v to the splitting field of f over K. For all a € A,
V'(f(a)) =0 (fi(a)) with f (z) = Hézl(:z; — ¢;), where the ¢; are the roots of f in
Ry, by Lemma 1.3. Put s = minge4v'(f,(a)). We replace each ¢; by a d; € B
chosen such that Hi’:1($ — d;) = h(x) satisfies: for all a € A v'(h(a)) > s. If
(c; + ME)N A+ for all k € N, we pick d; out of (¢c; + M$) N B; otherwise out of
(¢; + MF)N B with k maximal such that (¢; + M%) N A # (). Since the intersection
of a residue class of M in R, with R, is either empty or an entire residue class of
a power of M, in R,, and B intersects all of these that A intersects, it is possible
to find such d; in B. Now for every a € A either v'(a — d;) > v'(a — ¢;) for all i and
so v'(h(a)) >v'(fi(a)) > s, or v'(a —d;) > s for some i and hence v'(h(a)) > s. To
get a polynomial of degree n, set g(x) = (z — do)"'h(z), dy € B. [
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2. POLYNOMIALS MAPPING INTO A MAXIMAL POWER OF M,
If R is an infinite subring of a discrete valuation ring R,, we will construct poly-
nomials g,(z) = (z —a1)...(x — a,) that map R into the maximal possible (for a
monic polynomial of degree n) power of M,, by finding sequences (a;) in R that
show a nice distribution among the cosets of M,' N R, to serve as roots.

This generalizes a procedure of Pélya [16] (also used by Gunji and McQuillan
[12, 14], Cahen [4] and others) for the special case where R, = R, @ being a prime
ideal of index ¢ in R such that Rq is a discrete valuation ring: Pick 7w € Q\Q2
and a complete set of residues rg, ...,r,—1 of @ in R and define a,, = Zz>0 Te,m, if
n =7y .50Ciq" is the g-adic expansion of n. The resulting polynomials map R into
the highest possible power of @ and can be used to give a regular basis of Int(R,)
(most clearly stated in [14]). Gilmer [10] has remarked that the construction even
works for Int(D), D a quasi-local ring with principal maximal ideal.

The Z-sequences below are defined for any commutative ring R. All sequences
are indexed by an initial segment of N or Nj. Quantifiers over indices of such a
sequence are assumed to range over precisely the index-set.

2.0 Definition. For a set Z of ideals in a commutative ring R we define an
Z-sequence in R to be a sequence (a,) of elements in R with the property

VIeI Vn,m an =am; mod I < [R:I]|n—m
We define a homogeneous Z-sequence to be one with the additional property
VieZl Vn>1 an €I <= [R:I]|n

(Any infinite [R : I] we regard as dividing 0, but no other integer.) Note that
ai, asz, .. is a homogeneous Z-sequence if and only if 0=ay, a1, as, .. is an Z-sequence.

2.1 Proposition. Let T = {I,,|n € N} be a descending chain of ideals in a
commutative ring R, then there exists an infinite homogeneous I-sequence in R.

Proof. Put Iy = R. For k > 0, if [Ij: I41] is finite, let {a(-k)|0 < j < g Ip41]}

(k)

be a system of representatives of Iy : I with ay’ = 0, otherwise let ( (k ))geNo

be a sequence in [; of elements pairwise incongruent mod Iy, with a(()k) =0. If
Iy € T with [R:1Iy] finite, then every n < [R:Iy] has a unique representation

n= Y0 jelR: L) with 0 < ji < [Ii: Is1), and we set a, = Yo' al™ . If the
indices of ideals in Z get arbitrarily large while remaining finite, this defines our
7Z-sequence inductively. Otherwise there exists I € Z of maximal finite index such
that either [In:Iny1] is infinite or I,,, = Iy for m > N. Define a,, for n < [R: Iy]
as above. Then, in the first case, set a,, = aq(N) + a, for m = q[R:Iy]| + r with

0<r<|[R:Iy], and a,, = a, in the second. O

2.2 Facts.

(i) For I € T of finite index in R, any [R : I] consecutive terms of an I-sequence
form a complete set of representatives of R mod I.

(ii) If (a;)}_, is an T-sequence in R then (r — a;)I_y is an I-sequence for every
r € R and (a, — an_i)?:_ol is a homogeneous I-sequence.

The following lemma will be needed for globalization.
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2.3 Lemma. If ay,...,a; is an Z-sequence for a chain of ideals T, J € T with
[R:J]>1, and by,....,b; € R such that b, = a, mod J for 1 < n <1, then (b,) is
also an Z-sequence, and homogeneous if (ay,) is.

Proof. Let I € T and 1 < n,m <. First suppose n = m mod [R : I|. Then n =m
or [R: 1] <. In the latter case J C I, so b, = a,, = a,, = by, mod I. Now suppose
n#m mod [R:I]|. Either JC T or I CJ. If JCI then b, = a,, # a,, = by, mod I.
If I C J then b, = a,, # ay, = by, mod J (because 0 # n — m < [R : J]), hence
b, #Z by, mod I. Homogeneity is shown similarly. [J

From now on, R is always an infinite subring of a discrete valuation ring R,.
Note that the definitions of «, r(n) and v-sequence below depend only on M,
and R, and thus not distinguish between equivalent valuations.

2.4 Definition. A v-sequence for R is a {M]' N R |n € N}-sequence in R. In other
words, (a,) is a v-sequence for R if and only if for all n € N and all 4, j,

a—a; € M," <<= [R:M,"NR]|i—j
and a homogeneous v-sequence if in addition, for all n € N and all j > 1,
a; € M, <<= [R:M,"NR]|j.

If [R: M,” N R] is infinite, distinct elements of a v-sequence must be incongruent
mod M, N R. Proposition 2.1 guarantees the existence of an infinite homogeneous
v-sequence for every infinite subring R of every discrete valuation ring R,,.

2.5 Definition. For n € Ny, R an infinite subring of R, and ¢ € N, let

o Flie] = gl

Jj=1 J21

Infinite indices are allowed; =+ = 0. Since R is infinite, a, r(n) is always a

finite number. We will frequently use the fact that a, r(n) > 0 if and only if
n>[R:M,NR]. If Q is a prime ideal in a domain D, such that D¢ is a discrete
valuation ring, we write v, for the corresponding valuation with value group Z.

2.6 Facts.

i) If Q is a prime ideal of finite index q in R such that R is a discrete valuation
Q
ring, then ., r(n) = aq(n) for alln.

(ii) If v is a discrete valuation, R an infinite subring of R, and v' an extension of

v with [['y : T'] = e finite, then «a, r(n)=-e€-a, r(n) for alln.

Proof. (i) Since @ is maximal, (QRg)" N R = Q" for all n. Using the fact that @
contains a generator of QR one sees that [R: Q"] =[Rg : (QRg)"] = ¢" for all n.
(ii) For k € N, My* "R = (M,* " R,) N R = M, ! N R, where [z] denotes the

appears e times, as

smallest integer greater or equal x. Each number m}

[m] for k= (j—1)e+1, ..., je, in the sum for a, r(n). O

In the remainder of section two, v is assumed to have value-group Z.
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2.7 Lemma. Let (a;)!"!, (b)), and (c;)7-, be v-sequences for R, and (c;),
homogeneous, then

(a) v(er ... cn) =apr(n) <v(br ... -by) <y r(n) +maxi<i<n v(b;),
(b) (T (ans1 — ai))= aw,r(n) <v(I]l,(r —b;)) for all T € R.
Proof. v(er - ... cn) =354 [{i|1 <i<mn, v(g) > j} and similarly for the b;.

Since for finite index M,? N R every [R: M,’ N R] successive terms of a v-sequence
form a complete residue system of R mod M,’ N R, we have Vj € N

{i1vle) = 7 = | 7t 41

m] < [t 1o 2 3| < [[ "

R:M,” NR]

This implies (a) (and, since the 1 on the right can only occur if [R: M, NR] Jn,
v(by - ... by) <y r(N) + maxi<i<, v(b;) — max{j | [R: M,” N R] divides n}). By
Fact 2.2 (ii) about Z-sequences, (b) is a special case of (a). O

2.8 Theorem. Let R be an infinite subring of R,. An R,-basis of Int(R, R,) is
given by

H?:1(33 —a;)

fomt e MO A G =)

(n=1),

where (an,)o2 4 is a v-sequence for R.

Proof. An infinite v-sequence (a,)%2; in R exists by Proposition 2.1 applied to

{M,"” " R|n € N}. The f,, being a K-basis of K[z], are free generators of the
R,-module they generate in K|x|, call this module F. Since by Lemma 2.7 every
frn maps R to R,, F C Int(R, R,). For the reverse inclusion we show the stronger
statement that Int(A, R,) C F, where A = {a,|n € N}. Let f € Int(A, R,),
f:Z;yzo l; f; with [; € K. We show inductively that the [; arein R,. lo=f(a1) €R,.
The induction hypothesis is [; € R, for 0 < j < n. Using this and the facts that
fila;) =0for j >4 and fj(a;+1) =1, we see that f(an+1) =1, + Z;:ol Lifi(anst).
Since f;(a;) € R, for all 4, j (by Lemma 2.7) and f € Int(A, R,), the sum on the
right as well as f(a,11) is in R,, therefore [,, € R,. O

Remark. For an infinite subring R of R, and A C R, the proof of Theorem 2.8
shows that if A contains an infinite v-sequence for R, then Int(A, R,) = Int(R, R,).
The converse holds, too (the criterion for Int(A, R,) = Int(R, R,) in [7] is easily
seen to be equivalent to A containing an infinite v-sequence for R).

Corollary 1. o, r(n) = max{ néigv(f(r)) | fmonic € Klz]|, deg f = n} and
My on) = { leading coefficients of n-th degree polynomials in Int(R, R,) } U {0}.

Proof. The second statement can be read off the theorem using Lemma 2.7 (b), the
first one then follows by Theorem 1.2. [J

Pélya’s Satz IV [16] is a special case: if P is a prime ideal in a domain R such
that Rp is a discrete valuation ring and [R : P| = g, then (by Proposition 1.4 with
B =R and Fact 2.6 i) ay(n) = max{ min,cr v-(f(r)) | f € R[z] \ P[z|, deg f =n}.
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Corollary 2. Let g,(x) = [[}—,(z — a;™), where (a;™)?_, is a v-sequence for R
when n > [R : M, N R], and let g, be any monic polynomial in R,[x] of degree n
for 0 <n <[R:M,NR]. Further let, for n € Ny, ¢, € K with v(c,) = —a r(n).

Then (Cngn)nen, i an Ry-basis of Int(R, R,).

Proof. For allneNy, re R, v(gn(r)) >y r(n) (by Lemma 2.7, when n>[R: M,NR],
and because g, € R,[x] and «a, r(n) =0 otherwise). By the maximality of a, r(n)
(Corollary 1), min,eg v(gn(r)) = aw r(n). Therefore (¢, gn)nen, is an R,-basis of
Int(R, R,) by Corollary 1 and Theorem 1.2 (ii). O

3. POLYNOMIALS MAPPING A SUBRING INTO A KRULL RING

Notation. Let S be a domain with quotient field K, such that S=(1 ., R,, V a set
of discrete valuations (with value-group Z) on K; and R an infinite subring of S.
We put [,, = {leading coefficients of n-th degree polynomials in Int(R,S)} U {0}
and introduce names for recurring additional conditions:

(F) VgeN{Q <IRI|[R:Q]=q and Q = M, N R for some v € V} is a finite set.

(C) For every prime ideal @ of finite index in R, the set of M," N R with n € N,
veV,and M, N R = Q, if not empty, forms a descending chain of ideals.

Note that (C) holds naturally in two cases: when there is only one M, such that
M, N R =@, and when every M," N R with M, N R = (Q is a power of Q.

3.0 Lemma. (Cahen [4]) If R is an infinite subring of a Krull ring S and g € N,
then S has at most finitely many height 1 prime ideals P with [R: PN R] = q.

Proof. There exists r € R with r? — r £ 0. For every P with Q = RN P of index q
in R, 7?7 —r € @ C P, so the statement follows by the definition of Krull ring. [

3.1 Lemma. Letv €V such that M, N R=Q # (0) and L the quotient field of R.
If Rg is a valuation ring, then it is a discrete valuation ring and Rg = R, N L.
If Q is also a maximal ideal then, for every n € N, M N R is a power of Q.

Proof. For any valuation ring V' with quotient field L and maximal ideal M we have
L\V={reL*|r~'eM}. Put R,NL=R, and M, L= M,, then R,, and R are
valuation rings with quotient field L and maximal ideals M,, and QRq, respectively.
RCR, and M,, NR=M,NR=Q imply Rg C R,, and also QRq C M,,. By the
latter inclusion L\ Rg ={re L*|r" 1 €QRg} C{reL*|r '€ M,}=L\R,. This
shows Rg = R, = R, N L, so Rq is a discrete valuation ring and every M.’ N Rg
is a power of QRg. If @ is maximal, then (QRg)* N R = Q" for all k, so M N R
is a power of Q). [(J

3.2 Lemma. (C) implies: For every finite set M of prime ideals of finite index
in R and every m € N, there exists a sequence (a;)j, in R that is a homogeneous
v-sequence for all v in YV with M, N R € M, simultaneously.

Proof. For every Q e M, I = {M," "R |v eV, neN, M,NR=Q} (if not
empty) is a descending chain by (C), so there exists a homogeneous Zg-sequence
(a;'9)$2,, in R by Proposition 2.1. For each Q with Zg # 0 let I be an element of
TIg with [R:Ig] >m. Ig = M,” N R for some v and n and therefore contains Q".
Since different () are co-prime, there exists, by the Chinese Remainder Theorem, a
sequence (a;)™, in R that is congruent to (a;(®))™, modulo I for all Q € M. By
Lemma 2.3, this a homogeneous Zg-sequence for all @) € M, i.e., a homogeneous
v-sequence for all v with M, " R € M. [
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From Lemma 3.0, Lemma 3.1 and the fact that the powers of an ideal ) form
a descending sequence, we conclude that the hypothesis of Theorem 3.4 below is
satisfied in at least one natural setting:

3.3 Fact. If S is a Krull ring, V = {vp | P € Spec'(S)}, and R an infinite subring
such that Rg is a valuation ring for every finite index Q = PN R, P € Spec!(9),
then (C) and (F') both hold.

In the following theorem, the case where S is a Dedekind ring and R = S is due
to Cahen [4] (also pertinent: [5]).

3.4 Theorem. Let R be an infinite subring of S =)

h vey o If (C) and (F) hold,
then

Lo =, My (n € No)

and there exists a reqular sequence of monic polynomials (gy,) in R[x| such that
Int(R,S) = ano I,Gn,

namely, gn(z) = [, (z — a;™), where (a;™)_, is a simultaneous v-sequence for

allv eV with [R: M, N R] <n.

M, (1) (by
~awr(M) get

Proof. Int(R,(,cy Bv) = Nyey Int(R, R,), therefore I, C 1,y

Theorem 2.8, Corollary 1). For the reverse inclusion, let ¢ € (¢, My
Vop={veV|ayrn) >0t ={veV|[R:M, mR]<n}then{M mR|veV}
is finite by (F). Let (a;(™)?", in R be a homogeneous v-sequence for all v € V,
simultaneously (which exists by Lemma 3.2) and g, (z) = [[/_,(z — a;™). Then
min,cr v(g(r)) > oy r(n) for all v € V (by Lemma 2.7 when v € V,,, and because
ay,r(n) = 0 and g, € R[r] otherwise) which means cg(z) € Int(R, (), R,) and
hence ¢ € I,,. This completes the proof of the first statement and also shows, for
all n >0, that I,,g, C Int(R,(),cy, Rv), so the second follows by Lemma 0.1. (]

From now on, S is a Krull ring. By convention, the empty intersection or product
of ideals of S equals S. We denote the set of height 1 prime ideals of S by Spec!(S)
or P. If P € P, we write ap p for a,, r and, if j € Ng, PY) for (PSp)I N S. With
this notation we have, for n € Ny and P € P:

apr(n) = ; {[RP(—%)HR]} .

3.5 Lemma. Let S be a Krull ring and V = {vp, | P € P}. If (C) holds, then
Int(R, S) has a reqular basis <= () rer PPRM) s principal for all n.

[R:PNR]<n

Proof. apr(n) # 0 if and only if [R: P N R| < n. Since (F) holds by Lemma 3.0,
this only happens for finitely many P for each n. If {ap|P € P} is a set of
integers, only finitely many of them non-zero, then ()p.p (PSp)~%F is principal
if and only if (\pep (PSp)*” is, namely if there exists c € K with v,(c) = ap for all
P e P. If all ap are non-negative then (\pop (PSp)*” =, 5o P"). Applied to
Npep (PSp)~@7#(M which is I,, by Theorem 3.4, with Lemma 0.1 (iii) in mind,
this proves the claim. [
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3.6 Theorem. Let R be an infinite subring of a Krull ring S, P = Spec!(S),
P*={PecP|[R:PNR] finite} and Q={RNP|P e P*}. If Rg is a valuation
ring for all Q € Q, then Rg is a discrete valuation ring for all Q € Q and

Int(R,S) has a regular basis <= Yq€N ﬂ P€r) s q principal ideal of S,

PeP
[R:RNP]=q

where ep 1s the ramification index of PSp over QRq, for P€ P*, Q = PNR.

Proof. Let Py={P€P|[R: PNR]=q}, PeP,;, Q=PNR, L the quotient field of R,
then by Lemma 3.1 Rg =SpNL and R, is a discrete valuation ring. v, =(1/ep)vp
is equivalent to vy and is an extension of vy to K with [I'y : I'y,] = ep. By the
Facts 2.6 (ii) and (i), ap r(n) = au, r(n) = epag r(n) = epay(n).

If we call left and right side of the claimed equivalence (1) and (r), respectively,
then (1) is equivalent to (I') “vn (| rer  P(@Pr(M) is principal’ by Lemma 3.5

[R:PNR]<n

(whose condition (C) holds by Fact 3.3). We know that ﬂ[ pep Plarr(n) —

R:PNR]<n

Ny<n nPqu pleraq(n)) = The latter is clearly principal provided all ﬂPe’Pq p(er)
are; thus (r) = (1).

For (I') = (r), suppose (\,<,, Npep, Pleraam) — 5 S for all n. We see that
$¢S = (pep, Pler) 0 Ni<q Npep, plerai(ad)) hecause ay(q) = 1. This allows an
induction on ¢: from the formula for 5,5 we conclude that [ Pep, P(€P) ig principal
if Npep, P(€P) is principal for all I < ¢. O

Corollary 1. If R C S is an extension of Krull rings such that ht(P N R) <1 for
all height 1 prime ideals P of S then

Int(R, S) has a reqular basis <= Vq€N ﬂQESpeC1<R) div(QS) is principal,
[R:Q]=q

where div(QS) means the smallest divisorial ideal containing QS.

Proof. If R C S is an extension of Krull rings with the stated property and @ is in
Spec! (R), then div(QS) = pespect sy P€7), where e, = e(P|Q) is the ramification
NR=Q

PNR
index of PSp over QRq [1, p183]. O

In particular, if R C S is an extension of Dedekind rings, then

Int(R, S) has a regular basis <= VqgeN HQESPMR) @S is principal.
[

R:Q]l=q

A different specialization gives Ostrowski’s criterion [15]. If S is a Krull ring,

P is principal.

PeSpecl(S)
[S:P]=q

Int(S) has a regular basis <= VqgeN H

When a regular basis exists, we can give a fairly explicit description of one. (For
Int(S), S a Dedekind ring, there also is a different construction by Gerboud [9].)
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Corollary 2. In the situation of Theorem 3.6, if ﬂ[ per  PP) =¢,S (g €N)

R:PNR]=q

then a reqular basis of Int(R, S) is given by fo =1,

fu(@) =[] g™ H(ac — ;™) (n €N),

q<n
where (a;™M)?_, C R is a vp-sequence for all P € P with [R: PN R] < n.

Proof. vp(cq_aq(n)) = —epay(n) = —appr(n) for the P € P with [R: PN R] = ¢,

and zero for all other P € P, so vp([],<, cq_%(n)) = —apr(n) for all P € P (since

apr(n)=0if n <[R: PN R]). Therefore the f, are an Sp-basis of Int(R, Sp) for
all P € P simultaneously, by Theorem 2.8, Corollary 2. [
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