Proc. Amer. Math. Soc. 124 (1996) 3595–3604.

INTEGER-VALUED POLYNOMIALS ON KRULL RINGS

Sophie Frisch

ABSTRACT. If R is a subring of a Krull ring S such that R_Q is a valuation ring for every finite index $Q = P \cap R$, P in Spec¹(S), we construct polynomials that map R into the maximal possible (for a monic polynomial of fixed degree) power of PS_P , for all P in Spec¹(S) simultaneously. This gives a direct sum decomposition of Int(R, S), the S-module of polynomials with coefficients in the quotient field of S that map R into S, and a criterion when Int(R, S) has a regular basis (one consisting of 1 polynomial of each non-negative degree).

INTRODUCTION

If A is an infinite subset of a domain S, we write $\operatorname{Int}(A, S)$ for the S-module of polynomials with coefficients in the quotient field of S that – when acting as a function by substitution of the variable – map A into S. For $\operatorname{Int}(S, S)$, the ring of integer-valued polynomials on S, we write $\operatorname{Int}(S)$. Beyond the fact (known of old) that the binomial polynomials $\binom{x}{n} = \frac{x(x-1)\dots(x-n+1)}{n!}$ form a basis of the free \mathbb{Z} -module $\operatorname{Int}(\mathbb{Z})$, the study of $\operatorname{Int}(S)$ originated with Pólya [16] and Ostrowski [15], who let S be the ring of integers in a number field (their results have been generalized to Dedekind rings by Cahen [4]). $\operatorname{Int}(R, S)$ for $R \neq S$ has only begun to attract attention more recently [2, 3, 6, 8, 11, 13].

We will treat Pólya's and Ostrowski's questions in the case where $R \neq S$ and Sis a Krull ring; in particular the question when $\operatorname{Int}(R, S)$ is a free S-module that admits a regular basis, and the related one of determining the highest power of PS_P , where P is a height 1 prime ideal of S, that a monic polynomial of fixed degree can map R into. Following Pólya, we call a sequence of polynomials $(g_n)_{n \in \mathbb{N}_0}$ regular, if deg $g_n = n$ for all n. One basic connection between a module of polynomials and the modules of leading coefficients should be kept in mind:

0.1 Lemma. Let R be a unitary subring of a field K, M an R-submodule of K[x], and $I_n = \{ \text{ leading coefficients of n-th degree polynomials in } M \} \cup \{0\}.$

- (i) If $(g_n)_{n \in \mathbb{N}_0}$ is a regular sequence of monic polynomials in K[x] such that $I_n g_n \subseteq M$ for all n, then $M = \sum_{n=0}^{\infty} I_n g_n$ (direct sum).
- (ii) A regular set of polynomials in M is an R-basis if and only if the leading coefficient of the n-th degree polynomial generates I_n as an R-module.
- (iii) M has a regular R-basis if and only if each I_n is non-zero and cyclic.

Proof. (i) If $(g_n)_{n \in \mathbb{N}_0}$ is as stated, then $\sum_{n=0}^{\infty} I_n g_n \subseteq M$ and the sum is direct, since $\deg(g_n) = n$ makes the g_n linearly independent over K. An induction on $N = \deg f$

¹⁹⁹¹ Mathematics Subject Classification. Primary 13B25, 13F05; Secondary 13F20, 11C08.

shows that $f \in M$ implies $f \in \sum_{n=0}^{N} I_n g_n$. Indeed, for N = 0, $f \in I_0 = g_0 I_0$, and if N > 0 and a_N is f's leading coefficient, then $a_N \in I_N$, so $h = f - a_N g_N \in M$ and $h \in \sum_{n=0}^{N-1} I_n g_n$ by induction hypothesis. (ii) and (iii) are easy. \Box

1. POLYNOMIALS MAPPING A SET INTO A DISCRETE VALUATION RING Throughout section one, v is a discrete valuation on a field K with value-group $\Gamma_v = \mathbb{Z}$ and $v(0) = \infty$, and R_v its valuation ring with maximal ideal M_v . In a kind of generic local regular basis theorem, we will establish the connection (well-known in special cases) between $\operatorname{Int}(A, R_v)$ and the maximal power of M_v that a monic polynomial of degree n can map A into, for all $A \subseteq K$ for which this maximum exists for every n. A subset A of the quotient field of a domain R is called R-fractional if there exists a $d \in R \setminus \{0\}$ such that $dA \subseteq R$.

1.0 Lemma. If R is an integrally closed domain with quotient field L, $A \subseteq L$ and f non-constant $\in L[x]$ then f(A) is R-fractional if and only if A is.

Proof. Let $f \in L[x]$, deg f = n > 0. If f(A) is *R*-fractional there is a non-zero $d \in R$, with $df(a) \in R$ for every $a \in A$. Let $c \in R \setminus \{0\}$, such that $cf \in R[x]$, and set $g = cdf = c_n x^n + \ldots + c_0$. For every $a \in A$, $g(a) \in R$ implies that $c_n a$ is integral over R, therefore $c_n a \in R$ and $c_n A \subseteq R$. The converse is clear. \Box

Since a set $B \subseteq K$ is R_v -fractional if and only if $\min_{b \in B} v(b)$ exists, Lemma 1.0 shows that A being R_v -fractional is necessary and sufficient for $\min_{a \in A} v(f(a))$ to exist for any non-constant $f \in K[x]$. To exclude polynomials identically zero on A, for which $\min_{a \in A} v(f(a)) = \infty$, we need deg f < |A|, so that the conditions on A in Lemma 1.1 below are necessary.

1.1 Lemma. Let $n \in \mathbb{N}_0$. If A is an R_v -fractional subset of K with |A| > n, then $\max\{\min_{a \in A} v(f(a)) \mid f \text{ monic } \in K[x], \deg f = n\}$ exists.

Proof. The case n = 0 is trivial; so let n > 0 and $m \in \mathbb{N}$ such that A is not contained in any union of n cosets of M_v^m in K. Such an m exists, since n < |A| and by the Krull Intersection Theorem $\bigcap_{m \in \mathbb{N}} M_v^m = (0)$. We show that for every monic $f \in K[x]$ of degree n there exists an $a_0 \in A$ with $v(f(a_0)) < nm$ (and consequently $\max\{\min_{a \in A} v(f(a)) \mid f \text{ monic } \in K[x], \deg f = n\} < nm$).

Let v' be an extension of v to the splitting field of f over K, $R_{v'}$ its valuation-ring with maximal ideal $M_{v'}$, and $e = [\Gamma_{v'} : \Gamma_v]$. A is not contained in any union of ncosets of $M_{v'}^{me}$ in K'. Pick an $a_0 \in A$ that is not in $u + M_{v'}^{me}$ for any root u of f in K', then $v(f(a_0)) = v'(f(a_0)) = \sum_{i=1}^n v'(a_0 - u_i) < nm$. \Box

1.2 Theorem. Let A be an infinite, R_v -fractional subset of K. For $n \in \mathbb{N}_0$ set $\gamma_{v,A}(n) = \max\{\min_{a \in A} v(f(a)) \mid f \text{ monic } \in K[x], \deg f = n\}.$

- (i) $M_v^{-\gamma_{v,A}(n)} = \{ leading \ coefficients \ of \ degree \ n \ polynomials \ in \ Int(A, R_v) \} \cup \{ 0 \}$
- (ii) A regular basis of $\operatorname{Int}(A, R_v)$ is given by $(c_n g_n)_{n \in \mathbb{N}_0}$, with $g_n \in K[x]$ monic, $\deg g_n = n$, and $c_n \in K$, such that $\min_{a \in A} v(g_n(a)) = \gamma_{v,A}(n)$ and $v(c_n) = -\gamma_{v,A}(n)$.

Proof. Let $I_{n,v} = \{\text{leading coefficients of degree n polynomials in Int}(A, R_v)\} \cup \{0\}$. The leading coefficient c_n of any n-th degree polynomial in Int (A, R_v) must satisfy $v(c_n) \geq -\gamma_{v,A}(n)$, so $I_{n,v} \subseteq M_v^{-\gamma_{v,A}(n)}$. Now, for $n \in \mathbb{N}_0$, let g_n be monic of degree n in K[x] with $\min_{a \in A} v(g_n(a)) = \gamma_{v,A}(n)$ (such things exist by dint of Lemma 1.1) then $M_v^{-\gamma_{v,A}(n)}g_n \subseteq \text{Int}(A, R_v)$, so $M_v^{-\gamma_{v,A}(n)} \subseteq I_{n,v}$. This shows (i) and also that $I_{n,v}g_n \subseteq \text{Int}(A, R_v)$ for all $n \in \mathbb{N}_0$. (ii) follows by Lemma 0.1 and the fact that $M_v^{-\gamma_{v,A}(n)} = c_n R_v$ for every $c_n \in K$ with $v(c_n) = -\gamma_{v,A}(n)$. \Box

Before deriving a formula for $\max\{\min_{a \in A} v(f(a)) \mid f \text{ monic } \in K[x], \deg f = n\}$, when A is a subring of R_v , we check that the other plausible way of normalizing the polynomials would yield the same value. We also see that polynomials mapping $A \subseteq R_v$ into the maximal possible power of M_v can be chosen to split with their roots in any set that M_v -adically approximates A (for instance in A itself, or, if R_v is the localization of a ring R at a prime ideal of finite index, in R). We need a lemma from [7] (but include the proof).

1.3 Lemma. Let $f \in R_v[x]$, not all of whose coefficients lie in M_v , split over K, as $f(x) = d(x - b_1) \cdots (x - b_m) \cdot (x - c_1) \cdots (x - c_l)$ with $v(b_i) < 0$, $v(c_i) \ge 0$, and put $f_+(x) = (x - c_1) \cdots (x - c_l)$. Then for all $r \in R_v$ $v(f(r)) = v(f_+(r))$.

Proof. For $r \in R_v$ $v(r - b_i) = v(b_i)$ and so $v(f(r)) = v(d) + \sum_{i=1}^m v(b_i) + v(f_+(r))$; we show $v(d) = -\sum_{j=1}^m v(b_i)$. Consider $d^{-1}f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$. Since $f \in R_v[x] \setminus M_v[x], v(d) = -\min_{0 \le k \le n} v(a_k)$. But a_k is the elementary symmetric polynomial of degree n - k in the b_i and c_i , so the minimal valuation is attained by $v(a_{n-m}) = \sum_{i=1}^m v(b_i)$. \Box

1.4 Proposition. Let $A \subseteq R_v$ and $0 \le n < |A|$, then α and γ below are equal:

 $\alpha = \max\{\min_{a \in A} v(f(a)) \mid f \in R_v[x] \setminus M_v[x], \deg f = n\},\$ $\gamma = \max\{\min_{a \in A} v(f(a)) \mid f \text{ monic } \in K[x], \deg f = n\}.$

If, furthermore, $B \subseteq R_v$, such that B intersects every coset of M_v^l that A intersects, for all $l \in \mathbb{N}$, then δ below is equal to α and γ ; and so is β , if B is also a ring:

$$\beta = \max\{\min_{a \in A} v(f(a)) \mid f \in B[x] \setminus (M_v \cap B)[x], \deg f = n\},\$$

$$\delta = \max\{\min_{a \in A} v(f(a)) \mid f(x) = \prod_{i=1}^n (x - d_i), d_i \in B\}.$$

Proof. Let B be a fixed subset of R_v that intersects every coset of every power of M_v that A intersects (e.g. $B = R_v$, when only interested in α and γ). For n = 0 all four expressions are equal to 0; now consider a fixed n > 0. Clearly $\delta \leq \gamma$ and, if B is a ring, $\delta \leq \beta \leq \alpha$. Also $\gamma \leq \alpha$, because, given f monic in K[x], there exists a $d \in R_v$ such that $df = g \in R_v[x] \setminus M_v[x]$ and for all $a \in A \ v(g(a)) = v(d) + v(f(a)) \geq v(f(a))$, and so $\min_{a \in A} v(g(a)) \geq \min_{a \in A} v(f(a))$.

To show $\alpha \leq \delta$, we fix $f \in R_v[x] \setminus M_v[x]$ of degree n and construct a monic g that splits with roots in B such that $v(g(a)) \geq \min_{a \in A} v(f(a))$ for all $a \in A$. Let v' be an extension of v to the splitting field of f over K. For all $a \in A$, $v'(f(a)) = v'(f_+(a))$ with $f_+(x) = \prod_{i=1}^l (x - c_i)$, where the c_i are the roots of f in $R_{v'}$, by Lemma 1.3. Put $s = \min_{a \in A} v'(f_+(a))$. We replace each c_i by a $d_i \in B$ chosen such that $\prod_{i=1}^l (x - d_i) = h(x)$ satisfies: for all $a \in A$ $v'(h(a)) \geq s$. If $(c_i + M_{v'}^k) \cap A \neq \emptyset$ for all $k \in \mathbb{N}$, we pick d_i out of $(c_i + M_{v'}^s) \cap B$; otherwise out of $(c_i + M_{v'}^k) \cap B$ with k maximal such that $(c_i + M_{v'}^k) \cap A \neq \emptyset$. Since the intersection of a residue class of $M_{v'}^k$ in $R_{v'}$ with R_v is either empty or an entire residue class of a power of M_v in R_v , and B intersects all of these that A intersects, it is possible to find such d_i in B. Now for every $a \in A$ either $v'(a - d_i) \geq v'(a - c_i)$ for all i and so $v'(h(a)) \geq v'(f_+(a)) \geq s$, or $v'(a - d_i) \geq s$ for some i and hence $v'(h(a)) \geq s$. To get a polynomial of degree n, set $g(x) = (x - d_0)^{n-l}h(x)$, $d_0 \in B$. \Box

2. Polynomials mapping into a maximal Power of M_v

If R is an infinite subring of a discrete valuation ring R_v , we will construct polynomials $g_n(x) = (x - a_1) \dots (x - a_n)$ that map R into the maximal possible (for a monic polynomial of degree n) power of M_v , by finding sequences (a_i) in R that show a nice distribution among the cosets of $M_v^n \cap R$, to serve as roots.

This generalizes a procedure of Pólya [16] (also used by Gunji and McQuillan [12, 14], Cahen [4] and others) for the special case where $R_v = R_Q$, Q being a prime ideal of index q in R such that R_Q is a discrete valuation ring: Pick $\pi \in Q \setminus Q^2$ and a complete set of residues $r_0, ..., r_{q-1}$ of Q in R and define $a_n = \sum_{i\geq 0} r_{c_i}\pi^i$, if $n = \sum_{i\geq 0} c_i q^i$ is the q-adic expansion of n. The resulting polynomials map R into the highest possible power of Q and can be used to give a regular basis of $Int(R_v)$ (most clearly stated in [14]). Gilmer [10] has remarked that the construction even works for Int(D), D a quasi-local ring with principal maximal ideal.

The \mathcal{I} -sequences below are defined for any commutative ring R. All sequences are indexed by an initial segment of \mathbb{N} or \mathbb{N}_0 . Quantifiers over indices of such a sequence are assumed to range over precisely the index-set.

2.0 Definition. For a set \mathcal{I} of ideals in a commutative ring R we define an \mathcal{I} -sequence in R to be a sequence (a_n) of elements in R with the property

$$\forall I \in \mathcal{I} \quad \forall n, m \qquad a_n \equiv a_m \mod I \quad \Longleftrightarrow \quad [R:I] \mid n-m.$$

We define a *homogeneous* \mathcal{I} -sequence to be one with the additional property

$$\forall I \in \mathcal{I} \quad \forall n \ge 1 \qquad a_n \in I \iff [R:I] \,|\, n.$$

(Any infinite [R:I] we regard as dividing 0, but no other integer.) Note that $a_1, a_2, ...$ is a homogeneous \mathcal{I} -sequence if and only if $0=a_0, a_1, a_2, ...$ is an \mathcal{I} -sequence.

2.1 Proposition. Let $\mathcal{I} = \{I_n | n \in \mathbb{N}\}$ be a descending chain of ideals in a commutative ring R, then there exists an infinite homogeneous \mathcal{I} -sequence in R.

Proof. Put $I_0 = R$. For $k \ge 0$, if $[I_k: I_{k+1}]$ is finite, let $\{a_j^{(k)} | 0 \le j < [I_k: I_{k+1}]\}$ be a system of representatives of $I_k: I_{k+1}$ with $a_0^{(k)} = 0$, otherwise let $(a_j^{(k)})_{j \in \mathbb{N}_0}$ be a sequence in I_k of elements pairwise incongruent mod I_{k+1} , with $a_0^{(k)} = 0$. If $I_N \in \mathcal{I}$ with $[R:I_N]$ finite, then every $n < [R:I_N]$ has a unique representation $n = \sum_{k=0}^{N-1} j_k[R:I_k]$ with $0 \le j_k < [I_k:I_{k+1}]$, and we set $a_n = \sum_{k=0}^{N-1} a_{j_k}^{(k)}$. If the indices of ideals in \mathcal{I} get arbitrarily large while remaining finite, this defines our \mathcal{I} -sequence inductively. Otherwise there exists $I_N \in \mathcal{I}$ of maximal finite index such that either $[I_N:I_{N+1}]$ is infinite or $I_m = I_N$ for $m \ge N$. Define a_n for $n < [R:I_N]$ as above. Then, in the first case, set $a_m = a_q^{(N)} + a_r$ for $m = q[R:I_N] + r$ with $0 \le r < [R:I_N]$, and $a_m = a_r$ in the second. \Box

2.2 Facts.

- (i) For $I \in \mathcal{I}$ of finite index in R, any [R:I] consecutive terms of an \mathcal{I} -sequence form a complete set of representatives of $R \mod I$.
- (ii) If $(a_i)_{i=1}^n$ is an \mathcal{I} -sequence in R then $(r-a_i)_{i=1}^n$ is an \mathcal{I} -sequence for every $r \in R$ and $(a_n a_{n-i})_{i=0}^{n-1}$ is a homogeneous \mathcal{I} -sequence.

The following lemma will be needed for globalization.

2.3 Lemma. If $a_1, ..., a_l$ is an \mathcal{I} -sequence for a chain of ideals $\mathcal{I}, J \in \mathcal{I}$ with [R:J] > l, and $b_1, ..., b_l \in R$ such that $b_n \equiv a_n \mod J$ for $1 \le n \le l$, then (b_n) is also an \mathcal{I} -sequence, and homogeneous if (a_n) is.

Proof. Let $I \in \mathcal{I}$ and $1 \leq n, m \leq l$. First suppose $n \equiv m \mod [R:I]$. Then n = m or [R:I] < l. In the latter case $J \subseteq I$, so $b_n \equiv a_n \equiv a_m \equiv b_m \mod I$. Now suppose $n \not\equiv m \mod [R:I]$. Either $J \subseteq I$ or $I \subseteq J$. If $J \subseteq I$ then $b_n \equiv a_n \not\equiv a_m \equiv b_m \mod I$. If $I \subseteq J$ then $b_n \equiv a_n \not\equiv a_m \equiv b_m \mod J$ (because $0 \neq n - m < [R:J]$), hence $b_n \not\equiv b_m \mod I$. Homogeneity is shown similarly. \Box

From now on, R is always an infinite subring of a discrete valuation ring R_v . Note that the definitions of $\alpha_{v,R}(n)$ and v-sequence below depend only on M_v and R, and thus not distinguish between equivalent valuations.

2.4 Definition. A *v*-sequence for R is a $\{M_v^n \cap R \mid n \in \mathbb{N}\}$ -sequence in R. In other words, (a_n) is a *v*-sequence for R if and only if for all $n \in \mathbb{N}$ and all i, j,

$$a_i - a_j \in M_v^n \quad \iff \quad [R: M_v^n \cap R] \mid i - j$$

and a homogeneous v-sequence if in addition, for all $n \in \mathbb{N}$ and all $j \geq 1$,

$$a_j \in M_v^n \quad \iff \quad [R: M_v^n \cap R] \mid j.$$

If $[R: M_v \cap R]$ is infinite, distinct elements of a *v*-sequence must be incongruent mod $M_v \cap R$. Proposition 2.1 guarantees the existence of an infinite homogeneous *v*-sequence for every infinite subring *R* of every discrete valuation ring R_v .

2.5 Definition. For $n \in \mathbb{N}_0$, R an infinite subring of R_v and $q \in \mathbb{N}$, let

$$\alpha_{v,R}(n) = \sum_{j \ge 1} \left[\frac{n}{[R: M_v{}^j \cap R]} \right] \quad \text{and} \quad \alpha_q(n) = \sum_{j \ge 1} \left[\frac{n}{q^j} \right] \,.$$

Infinite indices are allowed; $\frac{n}{\infty} = 0$. Since R is infinite, $\alpha_{v,R}(n)$ is always a finite number. We will frequently use the fact that $\alpha_{v,R}(n) > 0$ if and only if $n \ge [R: M_v \cap R]$. If Q is a prime ideal in a domain D, such that D_Q is a discrete valuation ring, we write v_Q for the corresponding valuation with value group \mathbb{Z} .

2.6 Facts.

- (i) If Q is a prime ideal of finite index q in R such that R_Q is a discrete valuation ring, then $\alpha_{v_Q,R}(n) = \alpha_q(n)$ for all n.
- (ii) If v is a discrete valuation, R an infinite subring of R_v and v' an extension of v with $[\Gamma_{v'}:\Gamma_v] = e$ finite, then $\alpha_{v',R}(n) = e \cdot \alpha_{v,R}(n)$ for all n.

Proof. (i) Since Q is maximal, $(QR_Q)^n \cap R = Q^n$ for all n. Using the fact that Q contains a generator of QR_Q one sees that $[R:Q^n] = [R_Q:(QR_Q)^n] = q^n$ for all n. (ii) For $k \in \mathbb{N}$, $M_{v'}{}^k \cap R = (M_{v'}{}^k \cap R_v) \cap R = M_v{}^{\lceil \frac{k}{e} \rceil} \cap R$, where $\lceil x \rceil$ denotes the smallest integer greater or equal x. Each number $\left[\frac{n}{[R:M_v{}^j \cap R]}\right]$ appears e times, as $\left[\frac{n}{[R:M_v{}^j \cap R]}\right]$ for $k = (j-1)e+1, \ldots, je$, in the sum for $\alpha_{v',R}(n)$. \Box

In the remainder of section two, v is assumed to have value-group \mathbb{Z} .

2.7 Lemma. Let $(a_i)_{i=1}^{n+1}$, $(b_i)_{i=1}^n$ and $(c_i)_{i=1}^n$ be v-sequences for R, and $(c_i)_{i=1}^n$ homogeneous, then

(a)
$$v(c_1 \cdot \ldots \cdot c_n) = \alpha_{v,R}(n) \le v(b_1 \cdot \ldots \cdot b_n) \le \alpha_{v,R}(n) + \max_{1 \le i \le n} v(b_i),$$

(b) $v(\prod_{i=1}^{n} (a_{n+1} - a_i)) = \alpha_{v,R}(n) \le v(\prod_{i=1}^{n} (r - b_i))$ for all $r \in R$.

Proof. $v(c_1 \cdot \ldots \cdot c_n) = \sum_{j \geq 1} |\{i \mid 1 \leq i \leq n, v(c_i) \geq j\}|$ and similarly for the b_i . Since for finite index $M_v{}^j \cap R$ every $[R: M_v{}^j \cap R]$ successive terms of a *v*-sequence form a complete residue system of $R \mod M_v{}^j \cap R$, we have $\forall j \in \mathbb{N}$

$$\left|\{i \mid v(c_i) \ge j\}\right| = \left[\frac{n}{\left[R : M_v{}^j \cap R\right]}\right] \le \left|\{i \mid v(b_i) \ge j\}\right| \le \left[\frac{n}{\left[R : M_v{}^j \cap R\right]}\right] + 1$$

This implies (a) (and, since the 1 on the right can only occur if $[R: M_v{}^j \cap R] \not | n, v(b_1 \cdot \ldots \cdot b_n) \leq \alpha_{v,R}(n) + \max_{1 \leq i \leq n} v(b_i) - \max\{j \mid [R: M_v{}^j \cap R] \text{ divides } n\})$. By Fact 2.2 (ii) about \mathcal{I} -sequences, (b) is a special case of (a). \Box

2.8 Theorem. Let R be an infinite subring of R_v . An R_v -basis of $Int(R, R_v)$ is given by

$$f_0 = 1$$
 and $f_n(x) = \frac{\prod_{i=1}^n (x - a_i)}{\prod_{i=1}^n (a_{n+1} - a_i)}$ $(n \ge 1),$

where $(a_n)_{n=1}^{\infty}$ is a v-sequence for R.

Proof. An infinite v-sequence $(a_n)_{n=1}^{\infty}$ in R exists by Proposition 2.1 applied to $\{M_v{}^n \cap R \mid n \in \mathbb{N}\}$. The f_n , being a K-basis of K[x], are free generators of the R_v -module they generate in K[x], call this module F. Since by Lemma 2.7 every f_n maps R to R_v , $F \subseteq \operatorname{Int}(R, R_v)$. For the reverse inclusion we show the stronger statement that $\operatorname{Int}(A, R_v) \subseteq F$, where $A = \{a_n \mid n \in \mathbb{N}\}$. Let $f \in \operatorname{Int}(A, R_v)$, $f = \sum_{j=0}^N l_j f_j$ with $l_j \in K$. We show inductively that the l_j are in R_v . $l_0 = f(a_1) \in R_v$. The induction hypothesis is $l_j \in R_v$ for $0 \leq j < n$. Using this and the facts that $f_j(a_i) = 0$ for $j \geq i$ and $f_j(a_{j+1}) = 1$, we see that $f(a_{n+1}) = l_n + \sum_{j=0}^{n-1} l_j f_j(a_{n+1})$. Since $f_j(a_i) \in R_v$ for all i, j (by Lemma 2.7) and $f \in \operatorname{Int}(A, R_v)$, the sum on the right as well as $f(a_{n+1})$ is in R_v , therefore $l_n \in R_v$. \Box

Remark. For an infinite subring R of R_v and $A \subseteq R$, the proof of Theorem 2.8 shows that if A contains an infinite v-sequence for R, then $\operatorname{Int}(A, R_v) = \operatorname{Int}(R, R_v)$. The converse holds, too (the criterion for $\operatorname{Int}(A, R_v) = \operatorname{Int}(R, R_v)$ in [7] is easily seen to be equivalent to A containing an infinite v-sequence for R).

Corollary 1. $\alpha_{v,R}(n) = \max\{\min_{r \in R} v(f(r)) \mid f \text{ monic } \in K[x], \deg f = n\}$ and $M_v^{-\alpha_{v,R}(n)} = \{\text{ leading coefficients of n-th degree polynomials in } \operatorname{Int}(R, R_v) \} \cup \{0\}.$

Proof. The second statement can be read off the theorem using Lemma 2.7 (b), the first one then follows by Theorem 1.2. \Box

Pólya's Satz IV [16] is a special case: if P is a prime ideal in a domain R such that R_P is a discrete valuation ring and [R:P] = q, then (by Proposition 1.4 with B = R and Fact 2.6 i) $\alpha_q(n) = \max\{\min_{r \in R} v_P(f(r)) \mid f \in R[x] \setminus P[x], \deg f = n\}.$

Corollary 2. Let $g_n(x) = \prod_{i=1}^n (x - a_i^{(n)})$, where $(a_i^{(n)})_{i=1}^n$ is a v-sequence for Rwhen $n \ge [R : M_v \cap R]$, and let g_n be any monic polynomial in $R_v[x]$ of degree nfor $0 \le n < [R : M_v \cap R]$. Further let, for $n \in \mathbb{N}_0$, $c_n \in K$ with $v(c_n) = -\alpha_{v,R}(n)$. Then $(c_n g_n)_{n \in \mathbb{N}_0}$ is an R_v -basis of $\operatorname{Int}(R, R_v)$.

Proof. For all $n \in \mathbb{N}_0$, $r \in R$, $v(g_n(r)) \ge \alpha_{v,R}(n)$ (by Lemma 2.7, when $n \ge [R: M_v \cap R]$, and because $g_n \in R_v[x]$ and $\alpha_{v,R}(n) = 0$ otherwise). By the maximality of $\alpha_{v,R}(n)$ (Corollary 1), $\min_{r \in R} v(g_n(r)) = \alpha_{v,R}(n)$. Therefore $(c_n g_n)_{n \in \mathbb{N}_0}$ is an R_v -basis of Int (R, R_v) by Corollary 1 and Theorem 1.2 (ii). \Box

3. Polynomials mapping a subring into a Krull Ring

Notation. Let S be a domain with quotient field K, such that $S = \bigcap_{v \in \mathcal{V}} R_v$, \mathcal{V} a set of discrete valuations (with value-group \mathbb{Z}) on K; and R an infinite subring of S. We put $I_n = \{\text{leading coefficients of n-th degree polynomials in Int}(R, S)\} \cup \{0\}$ and introduce names for recurring additional conditions:

- (F) $\forall q \in \mathbb{N} \{ Q \leq R \mid [R:Q] = q \text{ and } Q = M_v \cap R \text{ for some } v \in \mathcal{V} \}$ is a finite set.
- (C) For every prime ideal Q of finite index in R, the set of $M_v^n \cap R$ with $n \in \mathbb{N}$, $v \in \mathcal{V}$, and $M_v \cap R = Q$, if not empty, forms a descending chain of ideals.

Note that (C) holds naturally in two cases: when there is only one M_v such that $M_v \cap R = Q$, and when every $M_v^n \cap R$ with $M_v \cap R = Q$ is a power of Q.

3.0 Lemma. (Cahen [4]) If R is an infinite subring of a Krull ring S and $q \in \mathbb{N}$, then S has at most finitely many height 1 prime ideals P with $[R: P \cap R] = q$.

Proof. There exists $r \in R$ with $r^q - r \neq 0$. For every P with $Q = R \cap P$ of index q in R, $r^q - r \in Q \subseteq P$, so the statement follows by the definition of Krull ring. \Box

3.1 Lemma. Let $v \in \mathcal{V}$ such that $M_v \cap R = Q \neq (0)$ and L the quotient field of R. If R_Q is a valuation ring, then it is a discrete valuation ring and $R_Q = R_v \cap L$. If Q is also a maximal ideal then, for every $n \in \mathbb{N}$, $M_v^n \cap R$ is a power of Q.

Proof. For any valuation ring V with quotient field L and maximal ideal M we have $L \setminus V = \{r \in L^* \mid r^{-1} \in M\}$. Put $R_v \cap L = R_w$ and $M_v \cap L = M_w$, then R_w and R_Q are valuation rings with quotient field L and maximal ideals M_w and QR_Q , respectively. $R \subseteq R_w$ and $M_w \cap R = M_v \cap R = Q$ imply $R_Q \subseteq R_w$ and also $QR_Q \subseteq M_w$. By the latter inclusion $L \setminus R_Q = \{r \in L^* \mid r^{-1} \in QR_Q\} \subseteq \{r \in L^* \mid r^{-1} \in M_w\} = L \setminus R_w$. This shows $R_Q = R_w = R_v \cap L$, so R_Q is a discrete valuation ring and every $M_v^n \cap R_Q$ is a power of QR_Q . If Q is maximal, then $(QR_Q)^k \cap R = Q^k$ for all k, so $M_v^n \cap R$ is a power of Q. \Box

3.2 Lemma. (C) implies: For every finite set \mathcal{M} of prime ideals of finite index in R and every $m \in \mathbb{N}$, there exists a sequence $(a_i)_{i=0}^m$ in R that is a homogeneous v-sequence for all v in \mathcal{V} with $M_v \cap R \in \mathcal{M}$, simultaneously.

Proof. For every $Q \in \mathcal{M}$, $\mathcal{I}_Q = \{M_v^n \cap R \mid v \in \mathcal{V}, n \in \mathbb{N}, M_v \cap R = Q\}$ (if not empty) is a descending chain by (C), so there exists a homogeneous \mathcal{I}_Q -sequence $(a_i^{(Q)})_{i=0}^{\infty}$ in R by Proposition 2.1. For each Q with $\mathcal{I}_Q \neq \emptyset$ let I_Q be an element of \mathcal{I}_Q with $[R:I_Q] > m$. $I_Q = M_v^n \cap R$ for some v and n and therefore contains Q^n . Since different Q are co-prime, there exists, by the Chinese Remainder Theorem, a sequence $(a_i)_{i=0}^m$ in R that is congruent to $(a_i^{(Q)})_{i=0}^m$ modulo I_Q for all $Q \in \mathcal{M}$. By Lemma 2.3, this a homogeneous \mathcal{I}_Q -sequence for all $Q \in \mathcal{M}$, i.e., a homogeneous v-sequence for all v with $M_v \cap R \in \mathcal{M}$. \Box

From Lemma 3.0, Lemma 3.1 and the fact that the powers of an ideal Q form a descending sequence, we conclude that the hypothesis of Theorem 3.4 below is satisfied in at least one natural setting:

3.3 Fact. If S is a Krull ring, $\mathcal{V} = \{v_P \mid P \in \text{Spec}^1(S)\}$, and R an infinite subring such that R_Q is a valuation ring for every finite index $Q = P \cap R$, $P \in \text{Spec}^1(S)$, then (C) and (F) both hold.

In the following theorem, the case where S is a Dedekind ring and R = S is due to Cahen [4] (also pertinent: [5]).

3.4 Theorem. Let R be an infinite subring of $S = \bigcap_{v \in \mathcal{V}} R_v$. If (C) and (F) hold, then $I_n = \bigcap_{v \in \mathcal{V}} M_v^{-\alpha_{v,R}(n)} \qquad (n \in \mathbb{N}_0)$

and there exists a regular sequence of monic polynomials (g_n) in R[x] such that

$$\operatorname{Int}(R,S) = \sum_{n \ge 0} I_n g_n,$$

namely, $g_n(x) = \prod_{i=1}^n (x - a_i^{(n)})$, where $(a_i^{(n)})_{i=1}^n$ is a simultaneous v-sequence for all $v \in \mathcal{V}$ with $[R: M_v \cap R] \leq n$.

Proof. Int $(R, \bigcap_{v \in \mathcal{V}} R_v) = \bigcap_{v \in \mathcal{V}} \operatorname{Int}(R, R_v)$, therefore $I_n \subseteq \bigcap_{v \in \mathcal{V}} M_v^{-\alpha_{v,R}(n)}$ (by Theorem 2.8, Corollary 1). For the reverse inclusion, let $c \in \bigcap_{v \in \mathcal{V}} M_v^{-\alpha_{v,R}(n)}$. Set $\mathcal{V}_n = \{v \in \mathcal{V} \mid \alpha_{v,R}(n) > 0\} = \{v \in \mathcal{V} \mid [R : M_v \cap R] \leq n\}$ then $\{M_v \cap R \mid v \in \mathcal{V}_n\}$ is finite by (F). Let $(a_i^{(n)})_{i=1}^n$ in R be a homogeneous v-sequence for all $v \in \mathcal{V}_n$ simultaneously (which exists by Lemma 3.2) and $g_n(x) = \prod_{i=1}^n (x - a_i^{(n)})$. Then $\min_{r \in R} v(g(r)) \geq \alpha_{v,R}(n)$ for all $v \in \mathcal{V}$ (by Lemma 2.7 when $v \in \mathcal{V}_n$, and because $\alpha_{v,R}(n) = 0$ and $g_n \in R[x]$ otherwise) which means $cg(x) \in \operatorname{Int}(R, \bigcap_{v \in \mathcal{V}} R_v)$ and hence $c \in I_n$. This completes the proof of the first statement and also shows, for all $n \geq 0$, that $I_n g_n \subseteq \operatorname{Int}(R, \bigcap_{v \in \mathcal{V}} R_v)$, so the second follows by Lemma 0.1. \Box

From now on, S is a Krull ring. By convention, the empty intersection or product of ideals of S equals S. We denote the set of height 1 prime ideals of S by $\operatorname{Spec}^1(S)$ or \mathcal{P} . If $P \in \mathcal{P}$, we write $\alpha_{P,R}$ for $\alpha_{v_P,R}$ and, if $j \in \mathbb{N}_0$, $P^{(j)}$ for $(PS_P)^j \cap S$. With this notation we have, for $n \in \mathbb{N}_0$ and $P \in \mathcal{P}$:

$$\alpha_{P,R}(n) = \sum_{j \ge 1} \left[\frac{n}{[R:P^{(j)} \cap R]} \right] \,.$$

3.5 Lemma. Let S be a Krull ring and $\mathcal{V} = \{v_P \mid P \in \mathcal{P}\}$. If (C) holds, then $\operatorname{Int}(R,S)$ has a regular basis $\iff \bigcap_{\substack{P \in \mathcal{P} \\ [R:P \cap R] \leq n}} P^{(\alpha_{P,R}(n))}$ is principal for all n.

Proof. $\alpha_{P,R}(n) \neq 0$ if and only if $[R: P \cap R] \leq n$. Since (F) holds by Lemma 3.0, this only happens for finitely many P for each n. If $\{a_P \mid P \in \mathcal{P}\}$ is a set of integers, only finitely many of them non-zero, then $\bigcap_{P \in \mathcal{P}} (PS_P)^{-a_P}$ is principal if and only if $\bigcap_{P \in \mathcal{P}} (PS_P)^{a_P}$ is, namely if there exists $c \in K$ with $v_P(c) = a_P$ for all $P \in P$. If all a_P are non-negative then $\bigcap_{P \in \mathcal{P}} (PS_P)^{a_P} = \bigcap_{a_P > 0} P^{(a_P)}$. Applied to $\bigcap_{P \in \mathcal{P}} (PS_P)^{-\alpha_{P,R}(n)}$, which is I_n by Theorem 3.4, with Lemma 0.1 (iii) in mind, this proves the claim. \Box **3.6 Theorem.** Let R be an infinite subring of a Krull ring S, $\mathcal{P} = \operatorname{Spec}^1(S)$, $\mathcal{P}^* = \{P \in \mathcal{P} \mid [R : P \cap R] \text{ finite}\}$ and $\mathcal{Q} = \{R \cap P \mid P \in \mathcal{P}^*\}$. If R_Q is a valuation ring for all $Q \in \mathcal{Q}$, then R_Q is a discrete valuation ring for all $Q \in \mathcal{Q}$ and

 $\mathrm{Int}(R,S) \ has \ a \ regular \ basis \ \iff \forall \ q \in \mathbb{N} \ \bigcap_{P \in \mathcal{P} \atop [R:R \cap P] = q} P^{(e_P)} \ is \ a \ principal \ ideal \ of \ S,$

where e_P is the ramification index of PS_P over QR_Q , for $P \in \mathcal{P}^*$, $Q = P \cap R$.

Proof. Let $\mathcal{P}_q = \{P \in \mathcal{P} \mid [R:P \cap R] = q\}, P \in \mathcal{P}_q, Q = P \cap R, L$ the quotient field of R, then by Lemma 3.1 $R_Q = S_P \cap L$ and R_Q is a discrete valuation ring. $v'_P = (1/e_P)v_P$ is equivalent to v_P and is an extension of v_Q to K with $[\Gamma_{v'_P} : \Gamma_{v_Q}] = e_P$. By the Facts 2.6 (ii) and (i), $\alpha_{P,R}(n) = \alpha_{v'_P,R}(n) = e_P \alpha_{Q,R}(n) = e_P \alpha_q(n)$.

If we call left and right side of the claimed equivalence (l) and (r), respectively, then (l) is equivalent to (l') $\forall n \bigcap_{[R:P\cap R] \leq n} P^{(\alpha_{P,R}(n))}$ is principal' by Lemma 3.5 (whose condition (C) holds by Fact 3.3). We know that $\bigcap_{[R:P\cap R] \leq n} P^{(\alpha_{P,R}(n))} = \bigcap_{q \leq n} \bigcap_{P \in \mathcal{P}_q} P^{(e_P \alpha_q(n))}$. The latter is clearly principal provided all $\bigcap_{P \in \mathcal{P}_q} P^{(e_P)}$ are; thus (r) \Rightarrow (l').

For (l') \Rightarrow (r), suppose $\bigcap_{q \leq n} \bigcap_{P \in \mathcal{P}_q} P^{(e_P \alpha_q(n))} = s_n S$ for all n. We see that $s_q S = \bigcap_{P \in \mathcal{P}_q} P^{(e_P)} \cap \bigcap_{l < q} \bigcap_{P \in \mathcal{P}_l} P^{(e_P \alpha_l(q))}$, because $\alpha_q(q) = 1$. This allows an induction on q: from the formula for $s_q S$ we conclude that $\bigcap_{P \in \mathcal{P}_q} P^{(e_P)}$ is principal for all l < q. \Box

Corollary 1. If $R \subseteq S$ is an extension of Krull rings such that $ht(P \cap R) \leq 1$ for all height 1 prime ideals P of S then

$$Int(R,S) has a regular basis \iff \forall q \in \mathbb{N} \bigcap_{\substack{Q \in Spec^1(R) \\ [R:Q]=q}} \operatorname{div}(QS) is principal,$$

where $\operatorname{div}(QS)$ means the smallest divisorial ideal containing QS.

Proof. If $R \subseteq S$ is an extension of Krull rings with the stated property and Q is in $\operatorname{Spec}^{1}(R)$, then $\operatorname{div}(QS) = \bigcap_{P \in \operatorname{Spec}^{1}(S) \\ P \cap R = Q} P^{(e_{P})}$, where $e_{P} = e(P|Q)$ is the ramification index of PS_{P} over QR_{Q} [1, p183]. \Box

In particular, if $R \subseteq S$ is an extension of Dedekind rings, then

A different specialization gives Ostrowski's criterion [15]. If S is a Krull ring,

$$\operatorname{Int}(S) \text{ has a regular basis } \iff \forall q \in \mathbb{N} \prod_{\substack{P \in \operatorname{Spec}^1(S) \\ [S:P]=q}} P \text{ is principal.}$$

When a regular basis exists, we can give a fairly explicit description of one. (For Int(S), S a Dedekind ring, there also is a different construction by Gerboud [9].)

Corollary 2. In the situation of Theorem 3.6, if $\bigcap_{[R:P\cap R]=q} P^{(e_P)} = c_q S \ (q \in \mathbb{N})$ then a regular basis of $\operatorname{Int}(R, S)$ is given by $f_0 = 1$,

$$f_n(x) = \prod_{q \le n} c_q^{-\alpha_q(n)} \prod_{i=1}^n (x - a_i^{(n)}) \qquad (n \in \mathbb{N}),$$

where $(a_i^{(n)})_{i=1}^n \subseteq R$ is a v_P -sequence for all $P \in \mathcal{P}$ with $[R: P \cap R] \leq n$.

Proof. $v_P(c_q^{-\alpha_q(n)}) = -e_P\alpha_q(n) = -\alpha_{P,R}(n)$ for the $P \in \mathcal{P}$ with $[R: P \cap R] = q$, and zero for all other $P \in \mathcal{P}$, so $v_P(\prod_{q \leq n} c_q^{-\alpha_q(n)}) = -\alpha_{P,R}(n)$ for all $P \in \mathcal{P}$ (since $\alpha_{P,R}(n) = 0$ if $n < [R: P \cap R]$). Therefore the f_n are an S_P -basis of $Int(R, S_P)$ for all $P \in \mathcal{P}$ simultaneously, by Theorem 2.8, Corollary 2. \Box

References

- S. Balcerzyk and T. Józefiak, Commutative Noetherian and Krull Rings, Ellis Horwood, Chichester; distr. by Wiley, New York, 1989.
- [2] P.-J. Cahen, Integer-valued polynomials on a subset, Proc. Amer. Math. Soc. 117 (1993), 919–929.
- [3] P.-J. Cahen, Parties pleines d'un anneau noethérien, J. Algebra 157 (1993), 199–212.
- [4] P.-J. Cahen, Polynômes à valeurs entières, Canad. J. Math. 24 (1972), 747–754.
- [5] P.-J. Cahen and J.-L. Chabert, Coefficients et valeurs d'un polynôme, Bull. Sci. Math. 2^e Sér. 95 (1971), 295–304.
- [6] J.-L. Chabert and G. Gerboud, Polynômes à valeurs entières et binômes de Fermat, Canad. J. Math. 45 (1993), 6–21.
- [7] S. Frisch, Substitution and Closure of Sets under Integer-valued Polynomials, J. Number Theory (to appear).
- [8] G. Gerboud, Substituabilité d'un anneau de Dedekind, CR Acad. Sci. Paris **317** (1993), 29-32.
- [9] G. Gerboud, Construction, sur un anneau de Dedekind, d'une base régulière de polynômes à valeurs entières, manuscripta math. 65 (1989), 167–179.
- [10] R. Gilmer, Prüfer Domains and Rings of Integer-Valued Polynomials, J. Algebra 129 (1990), 502–517.
- [11] R. Gilmer, Sets That Determine Integer-Valued Polynomials, J. Number Theory 33 (1989), 95–100.
- [12] H. Gunji and D. L. McQuillan, On a Class of Ideals in an Algebraic Number Field, J. Number Theory 2 (1970), 207–222.
- [13] D. L. McQuillan, On a Theorem of R. Gilmer, J. Number Theory **39** (1991), 245–250.
- [14] D. L. McQuillan, On Pr
 üfer domains of polynomials, J. reine angew. Math. 358 (1985), 162–178.
- [15] A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math. 149 (1919), 117–124.
- [16] G. Pólya, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math. 149 (1919), 97–116.

Institut für Mathematik C, Technische Universität Graz, Kopernikusgasse 24, A-8010 Graz, Austria

e-mail: frisch@blah.math.tu-graz.ac.at