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INTERPOLATION DOMAINS

PAUL-JEAN CAHEN, JEAN-LUC CHABERT, AND SOPHIE FRISCH

Abstract. Call a domain D with quotient field K an interpolation domain if,
for each choice of distinct arguments a1, . . . , an and arbitrary values c1, . . . , cn

in D, there exists an integer-valued polynomial f (that is, f ∈ K[X] with

f(D) ⊆ (D)), such that f(ai) = ci for 1 ≤ i ≤ n. We characterize completely
the interpolation domains if D is Noetherian or a Prüfer domain. In the

first case, we show that D is an interpolation domain if and only if it is one-

dimensional, locally unibranched with finite residue fields, in the second one,
if and only if the ring Int(D) = {f ∈ K[X] | f(D) ⊆ D} of integer-valued

polynomials is itself a Prüfer domain. We also show that an interpolation

domain must satisfy a double-boundedness condition, and thereby simplify a
recent characterization of the domains D such that Int(D) is a Prüfer domain.

Introduction

Let K be a field. By the Lagrange interpolation formula, there is a polynomial, with
coefficients in K, assigning given values to given distinct elements in K. The same
does not hold for a domain D (which is not a field), as polynomials in D[X] preserve
congruences modulo every ideal of D. However, for certain domains D interpolation
may be possible using integer-valued polynomials, that is, polynomials f with coef-
ficients in the quotient field of D, such that f(D) ⊆ D. For instance, if D = Z is the
ring of integers, it is clear that the binomial polynomials

(
X
n

)
= X(X−1)...(X−n+1)

n!
are integer-valued, hence, by linear combination, there is an integer-valued polyno-
mial of degree n assigning given values to the integers 0 to n (and, changing X to
X − a, to any finite set of consecutive integers).

It follows from a result of Carlitz [4, Theorem 7.1], together with Lagrange
interpolation, that this is also the case for D = Fq[t] (a proof using an interpolation
sequence that runs through Fq[t] bijectively has been given by Wagner [7]). Using
such interpolation sequences one could extend this property to a discrete rank-one
valuation domain with finite residue field (giving also an estimate for the degree of
interpolation polynomials, [5]). More generally, it is known that interpolation by
integer-valued polynomials is possible in every Dedekind domain with finite residue
fields [5].

In this paper we completely classify the domains for which interpolation by
integer-valued polynomials is possible, among Noetherian and Prüfer domains. We
adopt the usual notation of Int(D) for the ring of integer-valued polynomials on
the domain D, that is, Int(D) = {f ∈ K[x] | f(D) ⊆ D}, where K denotes the
quotient field of D, and we set the following definition:
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Definition 1. The domain D is an Interpolation Domain if, for each choice of
distinct arguments a1, . . . , an and arbitrary values c1, . . . , cn in D, there exists f ∈
Int(D) such that f(ai) = ci, for 1 ≤ i ≤ n.

In a first section, we give necessary conditions. We find that every interpola-
tion domain is one-dimensional with finite residue fields and satisfies the following
double-boundedness condition: for each nonzero z ∈ D there is an integer n such
that, for each maximal ideal m containing z, z /∈ mn, and |D/m| ≤ n.

In a second section, after giving some properties of localization, we characterize
the interpolation domains in the Noetherian case: a one-dimensional Noetherian
domain with finite residue fields is an interpolation domain if and only if it is locally
unibranched (we recall the definition within the said section).

In the last section we let D be a Prüfer domain. We first note that an interpo-
lation Prüfer domain is necessarily an almost Dedekind domain with finite residue
fields. Under this condition, we show that the following conditions are equivalent:
(i) D is an interpolation domain, (ii) D satisfies the double-boundedness condition,
(iii) Int(D) is a Prüfer domain. The equivalence of (ii) and (iii) simplifies Alan
Loper’s characterization of the domains D such that Int(D) is a Prüfer domain [6].

As seen at the beginning, the case of a field is trivial by the Lagrange interpo-
lation formula. In what follows, we always assume D to be a domain that is not a
field.

1. Necessary conditions

We first note that the interpolation property amounts to the possibility of assigning
arbitrary values to every pair of distinct elements.

Proposition 1.1. The following assertions are equivalent for a domain D.

(i) D is an interpolation domain,
(ii) for each pair of distinct elements a, b in D, there exists f ∈ Int(D) such

that f(a) = 0 and f(b) = 1,
(iii) for each pair of distinct elements a, b in D, and for each maximal ideal m

of D, there exists f ∈ Int(D) such that f(a) ∈ m and f(b) /∈ m.

Proof. (i) ⇒ (iii) Obvious.
(iii) ⇒ (ii) Let A be the set of polynomials g ∈ Int(D) such that g(a) = 0. Then
A is an ideal of Int(D). Let A(b) = {g(b) | g ∈ A}. Then A(b) is an ideal of D.
Assuming (iii), for each maximal ideal m, there is f ∈ Int(D) such that f(a) ∈ m
and f(b) /∈ m. Then g = f−f(a) belongs to A and is such that g(b) /∈ m. Hence A(b)
is not contained in any maximal ideal of D. Therefore A(b) = D, and in particular,
there exists f ∈ A such that f(b) = 1.
(ii) ⇒ (i) Use linear combinations of products of the polynomials existing by (ii).
�

Recall that, for each element a ∈ D, and each maximal ideal m of D, the set
Ma = {f ∈ Int(D) | f(a) ∈ m} is a maximal ideal of Int(D) (with residue field
isomorphic to D/m). The third condition of the Proposition 1.1 is clearly equivalent
to saying that these ideals are distinct, for distinct elements of D. This simple
remark is the key for our characterization of Noetherian interpolation domains [§2].
Hence, although it is just a rewording of the previous result, we give it as a corollary.
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Corollary 1.2. A domain D is an interpolation domain if and only if, for each
pair of distinct elements a, b in D, and for each maximal ideal m of D, the ideals
Ma and Mb of Int(D) are distinct.

Remark 1.3. From Proposition 1.1, it is also easy to generalize interpolation to
several indeterminates: if D is an interpolation domain, there is an integer-valued
polynomial in n indeterminates assigning given values to distinct arguments in Dn.
Given a pair of distinct elements a, b in Dn, it is enough to find a polynomial
such that f(a) = 0 and f(b) = 1. Writing a = (α1, . . . , αn) and b = (β1, . . . , βn),
then αi 6= βi for some i, hence there is an integer-valued polynomial f(Xi) in
one indeterminate, such that f(αi) = 0 and f(βi) = 1. Such a polynomial can be
considered as an integer-valued polynomial in n indeterminates.

Next we address the issue of finding interpolating polynomials of prescribed
degree. For this, we first establish a property of continuity.

Proposition 1.4. Let D be a domain, a be an ideal, and a ∈ D. If f ∈ Int(D) is
of degree d ≤ n, then z ∈ an implies

(
f(a + z)− f(a)

)
∈ a.

Proof. It suffices to prove the assertion for z of the special form z = ty, with
t ∈ a and y ∈ an−1. Indeed, each z ∈ an is a finite sum z =

∑r
i=1 zi of such

special elements, hence
(
f(a + z) − f(a)

)
is a finite sum of elements of the form(

f(bi + zi)− f(bi)
)
. Replacing f(X) by f(X + a)− f(a), we assume that f(0) = 0,

and show that f(ty) ∈ a. The result is obvious if n = 0. For n ≥ 1, we let
g(X) = f(tX) − tnf(X). Then g is a polynomial of degree at most n − 1, and
such that g(0) = 0. By induction, we have g(y) ∈ a. The result follows, since
f(ty) = g(y) + tnf(y) and tn ∈ a. �

In particular, for every ideal a of D, each f ∈ Int(D) is a uniformly continuous
function from D to D, in the a-adic topology: if deg(f) ≤ n, then z ∈ anh implies(
f(a + z)− f(a)

)
∈ ah.

Remark 1.5. In the case of a maximal ideal m, we can improve this result: if
deg(f) ≤ n, then z ∈ mn+h+1 implies

(
f(a+ z)− f(a)

)
∈ mh. As above, we assume

that f(0) = 0, and prove by induction on n that z = yt, with y ∈ mn+h and
t ∈ m, implies f(z) ∈ mh. As above, from f(z) = g(y) − tnf(z) and the induction
hypothesis, it follows that (1 + tn)f(z) ∈ mh. Since t ∈ m, f(z) ∈ mhDm ∩D, that
is, f(z) ∈ mh.

We are ready to give two necessary conditions for the existence of an interpolating
polynomial of given degree.

Lemma 1.6. Let D be a domain and z be a non-zero element of D for which there
exists a polynomial f ∈ Int(D) of degree n with f(0) = 0 and f(z) = 1. Then, for
every prime ideal p of D, we have

(1) z /∈ pn,
(2) if z ∈ p, then |D/p| ≤ n.

Proof. Proof. 1. Since we have
(
f(z) − f(0)

)
/∈ p, it follows from Proposition 1.4

that z /∈ pn.
2. Assume that n < |D/p|. Choosing n + 1 elements mutually incongruent modulo
p in D, and writing f as the Lagrange interpolation polynomial assigning the same
values as f to these elements, we see that f ∈ Dp[X] (see also [1, Corollary I.3.3]).
Therefore 1 = f(z)− f(0) ∈ zDp. We reach a contradiction if z belongs to p. �
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If z is a nonzero element and m a maximal ideal of D, we denote by wm(z) the
order of z with respect to m (that is, the largest integer n such that z ∈ mn). For
an interpolation domain, this order is well defined:

Proposition 1.7. Let D be an interpolation domain. Then D is one-dimensional
with finite residue fields. Moreover, for each nonzero element z ∈ D, there is an
integer n such that, for each maximal ideal m containing z, we have the double
boundedness condition |D/m| ≤ n and wm(z) ≤ n.

Proof. Assume D is an interpolation domain. For each nonzero element z ∈ D,
there exists a polynomial f ∈ Int(D), of some degree n, such that f(0) = 0, and
f(z) = 1. It follows from the previous lemma that, for each prime ideal p containing
z, z /∈ pn and |D/p| ≤ n. In particular, each nonzero prime ideal has a finite residue
field (since it contains a nonzero element), and D is one-dimensional. �

Remarks 1.8. (1) The proof of Lemma 1.6 suggests that, if D is an interpolation
domain, then Int(D) is not contained in Dp[X] for any prime ideal p. In fact, Int(D)
is not contained in B[X] for any overring B of D (that is, any ring B containing D
and strictly contained in K). Indeed, consider a nonzero prime ideal P of B. Then
p = P∩D is a nonzero prime ideal of D. If Int(D) ⊆ B[X], then for each f ∈ Int(D),
if a and b are congruent modulo p in D, we have

(
f(b)− f(a)

)
∈ P ∩D = p.

(2) If D is a one-dimensional local Noetherian domain with finite residue field,
the conditions of Proposition 1.7 are satisfied. The characterization we give in the
Noetherian case will show that these conditions are not sufficient [§2].
(3) The double-boundedness condition of Proposition 1.7 is very similar to the
condition given by Alan Loper for the characterization of the domains D such that
Int(D) is a Prüfer domain [6]. We come back to this issue in the last section.

2. Noetherian interpolation domains

We open this section with a property of localization. Recall that, for a multiplicative
subset S of a domain D, we have the containment S−1 Int(D) ⊆ Int(S−1D) [1,
Proposition I.2.2]. In general, this containment is strict, but if D is Noetherian, we
have an equality [1, Theorem I.2.3].

Lemma 2.1. Let D be an interpolation domain. Then S−1D is an interpolation
domain for each multiplicative subset S of D.

Proof. Let a/s, b/s be two distinct elements of S−1D, where a, b ∈ D and s ∈ S. By
hypothesis, there exists a polynomial f ∈ Int(D) such that f(a) = 0 and f(b) = 1.
Set g(X) = f(sX), then g (a/s) = 0, g (b/s) = 1, and g ∈ Int(D) ⊆ Int(S−1D).
The conclusion follows from Proposition 1.1. �

We turn now to the Noetherian case.

Proposition 2.2. Let D be Noetherian. Then D is an interpolation domain if and
only if Dm is an interpolation domain for every maximal ideal m of D.

Proof. It remains to show that, if each Dm is an interpolation domain, then so is
D. Let a 6= b in D, and m be a maximal ideal of D. By hypothesis, there is a
polynomial f ∈ Int(Dm) such that f(a) = 0 and f(b) = 1. Since D is Noetherian,
we have Int(D)m = Int(Dm): there is s ∈ D, s /∈ m such that sf ∈ Int(D). Clearly
sf(a) ∈ m and sf(b) /∈ m. The conclusion follows from Proposition 1.1. �
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Remark 2.3. For non-Noetherian D, it may be that each Dm is an interpolation
domain while D is not. For instance, if D is an almost Dedekind domain with finite
residue fields, then each Dm is a discrete valuation domain with finite residue field,
hence an interpolation domain (as noted in the introduction, see also Theorem 2.4
below), but D does not necessarily satisfy the double-boundedness condition of
Proposition 1.7 (see §3 below).

By Proposition 1.7 we may assume that D is a one-dimensional domain with
finite residue fields and by Proposition 2.2 that D is local with maximal ideal m.
Under these hypotheses, it is known that the ideals Ma = {f ∈ Int(D) | f(a) ∈ m}
are distinct if and only if D is unibranched, that is, the integral closure D′ of D is a
local ring (or equivalently a rank-one discrete valuation domain); and that, if D is
not unibranched, there are only finitely many distinct maximal ideals of the form
Ma [1, Theorem V.3.1 & Proposition V.3.10]. ¿From Corollary 1.2 it then follows
that D is an interpolation domain if and only it is unibranched. In the global case,
we derive immediately the following characterization.

Theorem 2.4. Let D be a Noetherian domain. Then D is an interpolation domain
if and only if it is one-dimensional with finite residue fields and locally unibranched.

Remarks 2.5. (1) Assume that D is a local one-dimensional Noetherian domain,
with maximal ideal m and finite residue field. Denote by D̂ the completion of D in
the m-adic topology. Integer-valued polynomials are uniformly continuous functions
and can be extended to D̂. Given a 6= b, there is clearly a continuous function ϕ

such that ϕ(a) = 0 and ϕ(b) = 1. If the continuous functions from D̂ to D̂ were
arbitrarily uniformly approximated by integer-valued polynomials, analogously to
the classical Stone-Weierstrass theorem, it would be easy to find f ∈ Int(D) such
that f(a) = 0 and f(b) = 1. This approximation property holds if only if D is
analytically irreducible [1, Theorem III.5.3] (analytically irreducible means that D̂
is a domain and implies that D is unibranched).
(2) If D is a one-dimensional Noetherian local ring with finite residue field, either
D is an interpolation domain, and the ideals Ma are all distinct, or D is not
unibranched, and there are only finitely many ideals of the form Ma [1, Proposition
V.3.10]. In general, for a quasi-local domain D, it may be that there are infinitely
many ideals of the form Ma which are not all distinct. This is obviously the case
if |D/m| is infinite, in which case Int(D) = D[X] is not an interpolation domain,
while Ma = Mb if and only if a ≡ b (mod m). But here is a less trivial example.
Let V be a valuation domain, with maximal ideal m, such that V/m is finite and m
is a principal ideal. If the dimension of V is strictly greater than one, then V is not
an interpolation domain. However, letting p =

⋂∞
1 mn, then p 6= (0) and Ma = Mb

in Int(V ) if and only if a ≡ b (mod p) [2, Théorème 2.2].

Corollary 2.6. If D is a Noetherian interpolation domain, then each overring of
D is an interpolation domain.

Proof. Let B be an overring of the Noetherian interpolation domain D. It follows
from Theorem 2.4 and from the Krull-Akizuki theorem that B is a one-dimensional
Noetherian domain with finite residue fields. Moreover, for each maximal ideal n
of B, Bn contains Dm where m = n ∩D. Hence the integral closure B′

n of Bn is an
overring of the integral closure D′

m of Dm. Since D′
m is a valuation domain, then so

is B′
n. �
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3. Prüfer Domains

We finally turn to the case where D is a Prüfer domain: For each maximal ideal
m, Dm is a valuation domain. If D satisfies the double-boundedness condition of
Proposition 1.7, Dm is a rank-one discrete valuation domain with finite residue
field. In other words, D is an an almost Dedekind domain with finite residue fields.
We derive the following characterization.

Theorem 3.1. Let D be a Prüfer domain. Then D is an interpolation domain
if and only if, for each nonzero element z ∈ D, there is an integer n such that,
for each maximal ideal m containing z, we have the double-boundedness condition
|D/m| ≤ n and wm(z) ≤ n.

Proof. It follows from Proposition 1.7 that the double boundedness condition is
necessary. Conversely, as we said above, it implies that D is an almost Dedekind
domain with finite residue fields. To each maximal ideal m of D corresponds an
essential valuation vm of D, and for z ∈ D, the order wm(z) is simply vm(z).
Consider then a 6= b in D and denote by V the set of essential valuations of D such
that v(b− a) > 0. We shall construct a polynomial f ∈ Int(D) such that f(a) = 0
and v

(
f(b)

)
= 0 for each v ∈ V. From Proposition 1.1 this will complete the proof

since, on the other hand, g = X − a is such that g(a) = 0 and v
(
g(b)

)
= 0 for

each essential valuation v /∈ V. Since there is an integer n such that vm(b− a) ≤ n
for each m containing (b− a), there is an integer e such that ev(y) is a multiple of
v(b − a) for each y ∈ D and each v ∈ V (for instance, e = lcm{v(b − a) | v ∈ V}).
Since there is an integer n such that |D/m| ≤ n for each m containing (b−a), there
is also an integer q such that v(yq−1 − 1) > 0 for each v ∈ V and each y ∈ D such
that v(y) = 0 (for instance, q − 1 = lcm{qv − 1 | v ∈ V}, where qv = |D/mv|). We
define a sequence of polynomials by

f0(X) = (X − a)e, and fn(X) =
fn−1(X)

(
fn−1(X)q−1 − 1

)e

b− a
.

We see by induction that v
(
fn(y)

)
is a non-negative multiple of v(b − a) for each

y ∈ D and each v ∈ V, and hence, that fn ∈ Int(D). On the other hand, we clearly
have fn(a) = 0 for all n. Finally, if v

(
fn−1(b)

)
> 0, we have v

(
[fq−1

n−1(b)− 1]e
)

= 0,

hence v
(
fn(b)

)
= v

(
fn−1(b)

)
− v(b− a). For n ≤ e, we then have

v
(
fn(b)

)
= v

(
f0(b)

)
− nv(b− a) = ev(b− a)− nv(b− a).

We conclude that fe is the polynomial we are looking for. �

If Int(D) is a Prüfer domain, then D is an almost Dedekind domain with finite
residue fields [1, Proposition VI.1.5]. On the other hand, the double-boundedness
condition is very similar to the condition given by Alan Loper to characterize the
almost Dedekind domains D such that Int(D) is a Prüfer domain [6]. Let us state
Alan Loper’s condition (as he did himself) in the case where the characteristic
of D is 0: Int(D) is a Prüfer domain if and only if, for each prime element p of
Z, there is an integer n, such that, for each essential valuation v of D such that
v(p) > 0, v(p) ≤ n and |D/m| ≤ n. (In the case where the characteristic of D is a
nonzero prime number q, he then gives a similar condition replacing Z by the ring
of polynomials Fq[t].) Our condition is a priori stronger than Alan Loper’s, since
we do not restrict ourselves to the prime elements of a subring of D. In fact, it
follows from the next result that both conditions are equivalent.
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Corollary 3.2. Let D be a Prüfer domain. Then D is an interpolation domain if
and only if Int(D) is a Prüfer domain.

Proof. If Int(D) is a Prüfer domain, then D is an almost Dedekind domain with
finite residue fields [1, Proposition VI.1.5]. Let m be a maximal ideal of D, b be
an element of D, and consider the maximal ideal Mb = {h ∈ Int(D) | h(b) ∈ m}
of Int(D). Clearly, the localization Int(D)Mb

is contained in the valuation domain
W = {ϕ ∈ K(X) | ϕ(b) ∈ Dm}. Since Int(D) is a Prüfer domain, Int(D)Mb

is
itself a valuation domain, and we have the equality Int(D)Mb

= W [3, Remark 2.5].
Since Dm is a rank-one discrete valuation domain with finite residue field, it is an
interpolation domain. Hence, for a 6= b, there exists a polynomial f ∈ Int(Dm) such
that f(a) = 0 and f(b) = 1. Obviously Int(Dm) ⊆ W, thus f ∈ Int(D)Mb

, and there
is g ∈ Int(D), g /∈ Mb such that gf ∈ Int(D). Clearly gf(a) ∈ m and gf(b) /∈ m. It
follows from Proposition 1.1 that D is an interpolation domain.

Conversely, if D is an interpolation domain, it satisfies the double-boundedness
condition, and it is known that this condition, under Alan Loper’s weaker form,
implies that Int(D) is a Prüfer domain [1, Proposition VI.4.4 and Remark VI.4.5].
�

Remarks 3.3. (1) This proof via interpolation domains avoids Alan Loper’s difficult
argument that the double-boundedness condition is necessary for Int(D) to be a
Prüfer domain [6]. Moreover, it shows that this condition holds in its stronger form.
(2) For a Dedekind domain D with finite residue fields, it is implicit in Alan Loper’s
characterization that Int(D) is a Prüfer domain if and only if it is not contained in
Dm[X] for any maximal ideal m of D [6]. This can be related to the fact that, if D
is an interpolation domain, then Int(D) is not contained in B[X] for any overring
B of D [Remark 1.8 (1)].

Similarly to the Noetherian case [Corollary 2.6], we finally have the following.

Corollary 3.4. If the Prüfer domain D is an interpolation domain, then each
overring of D is an interpolation domain.

Proof. If B is an overring of an almost Dedekind domain D, each maximal ideal
m of B is above a maximal ideal n = m ∩ D of D, and Bm = Dn. If D is an
interpolation domain, the double-boundedness condition satisfied by D is then also
clearly satisfied by B. �

We end this paper with a question raised by Corollaries 2.6 and 3.4.

Question 3.5. Assume that D is an interpolation domain. Is each overring of D an
interpolation domain? In particular, is the integral closure of D an interpolation
domain?
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