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INTERPOLATION

by
INTEGER-VALUED POLYNOMIALS

Sophie Frisch

ABSTRACT. Let R be a Krull ring with quotient field K and aq,...,a, in R.
If and only if the a; are pairwise incongruent mod every height 1 prime ideal of
infinite index in R does there exist for all values bq,...,b, in R an interpolating
integer-valued polynomial, i.e., an f € K[z] with f(a;) =b; and f(R) C R. If S
is an infinite subring of a discrete valuation ring R, with quotient field K and
ai,...,a, in S are pairwise incongruent mod all M* NS of infinite index in S, we
derive a formula (depending on the distribution of the a; among residue classes of
the ideals M* N .S) for the minimal d, such that for all by, ...,b, € R, there exists
a polynomial f € K|[z] of degree at most d with f(a;) =b; and f(S) C R,.

1. Introduction.

Suppose D is an integral domain with quotient field K. Unless D is a field, it
is not always possible, given ay,...,a, (distinct) and by,...,b, in D, to find a
polynomial f € D[z] with f(a;) =0b;. This is so because the function induced on D
by a polynomial with coefficients in D must preserve congruences mod every ideal
of D. One might say that the next best thing to interpolation with polynomials
in D[z] is interpolation with polynomials in K[z] that map every element of D
into D and thus induce a function on D.

We will show that this kind of interpolation is possible for arbitrary arguments
and values in D whenever D is a Dedekind ring all of whose residue fields are
finite, such as the ring of algebraic integers in a number field. (For D = 7Z this is
easy to see, and for D = F [z] it has been shown by Carlitz [5].)

More generally, we find that distinct elements ay, ..., a, of a Krull ring R have
the property that for all by, ...,b, in R there exists a polynomial f € K[z] with
f(a;) =b; and f(R) C R if and only if the a; are pairwise incongruent mod every
height 1 prime ideal P of R with [R: P] = cc.

We use the customary notation Int(E,D) = {f € Klz| | f(E) € D} and
Int(D) =1Int(D, D), where D is a domain with quotient field K and E a subset of
K. A polynomial f € K[z] that maps F into D is called “integer-valued” on E,
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INTEGER-VALUED POLYNOMIAL INTERPOLATION

following Pélya [15] and Ostrowski [14], who studied Int(D) where D is the ring
of algebraic integers in a number field. More recently, integer-valued polynomials
have been investigated by Cahen [2,3], Chabert [6], McQuillan [12,13], Gilmer,
Heinzer and Lantz [9], and others. For a survey of the subject, see the monograph
by Cahen and Chabert [4].

To interpolate at arguments ag,...,a,, we use linear combinations of the
polynomials fx(x) = Hf:ol(x - ai)/Hf:_Ol (ag —a;), 0 <k <mn. For this purpose
we introduce, when R is an infinite subring of a discrete valuation ring R, , special
sequences (ax) € R that ensure that the polynomials fj constructed from them
are in Int(R, R,) and then show how to embed a finite subset of R in a sequence
of this kind.

This approach seems justified by the result that the minimal length of such a
sequence containing «q,...,qa,, € R is equal to the minimal d such that for all
Boy -+ Pm € Ry there exists an f € Int(R, R,) with f(«o;) = 3; and deg f < d. It
also yields a formula for this minimal d, depending on the distribution of the «;
among the residue classes of RN MF in R.

2. Sequences.

In this section, R may be any commutative ring with identity. We denote the set
of non-negative integers {0, 1, 2, ...} by Ny. The kind of sequences below has
already been used in [7]; we need to develop some more of their properties.

2.1 Definition. For a set Z of ideals in a commutative ring with identity R,
we define a partial T-sequence to be an indexed set (ay)nenr, with N C Ny, of
elements in R, such that for all I € Z and all n, m e N/

an =apy mod I <= [R:I]|n—m.

(If [R: I] is infinite, we regard it as dividing 0, but no other integer.) A partial
ZI-sequence is called an 7 -sequence if N is an initial segment of Nj.

2.2 Convention. The length of a finite partial sequence (a,)nen is max(N).

2.3 Proposition. For every descending chain T = {I,, | n € N} of ideals in R
(a) every finite partial Z-sequence can be completed to an Z-sequence,
(b) every finite Z-sequence can be extended to an infinite T -sequence,

(c) every finite set A C R of elements pairwise incongruent mod I,;, where
[R: I,] is finite, can be embedded in a finite 7-sequence, and one of length
less than [R: I,4+1], if [R: I,41] is also finite.

Proof. Given (an)nen, and [ > max(N'), we show how to complete (a,) to an
7Z-sequence of length [. General principle: For a finite sequence of length [ to be
an Z-sequence (Z being a descending chain of ideals), it suffices that it satisfy the
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requirements with respect to Iy,..., Iy, if k satisfies [R: I}] > [ or for all m >k,
I, = 1.

Case 1: there exists Iy, of finite index with [R: Iy] > 1 or I,, = I} for m > k.
For j=1,...,k inductively, we assign a different residue class of I; in R to every
residue class mod [R:I;] in Z such that 1) for all n € N', n+ [R:I;]Z is assigned
an + I; (this is consistent because (a,)nen is a partial Z-sequence) and 2) if
r+1;_1 was assigned to m + [R:1;_1]Z, then the residue classes of I; in r+I;_;
are assigned to the residue classes of [R: [;]Z in m+ [R:1,_41]Z.

Case 2: there is Iy with [R:Ix_1] < and [R: I;] = co. We proceed as
above for j =0,...,k — 1 and then assign a different residue class of I, to every
n <1, n € Ny, such that 1) every n € N is assigned a,, + I} and 2) if r 4+ I};_; was
assigned to m + [R: Iy_1]|Z, every n € m + [R: I;_1]Z is assigned a residue class
of Iy, in v+ I_q.

We now define sequence elements for indices m € N, 0 <m <1, by choosing a,,

from the residue class of I}, assigned to m+[R:I;]Z (in case 1) or to m (in case 2).
!

The resulting sequence (ay,);,_, satisfies the Z-sequence requirements with respect
to Iy,... I, which is all we need by the general principle stated above. We can
extend (a,)!,_, to an Z-sequence of length I’ > [, and inductively to an infinite
Z-sequence by iterating the construction. This shows (a) and (b). It also shows
that Z-sequences of arbitrary length exist, since we can start with any ag € R and
extend it to an infinite Z-sequence.

For (c), if [R: I,41] is finite, we take an Z-sequence of length [R: I),41] — 1
and swap every member of A with the unique sequence element congruent to it
mod I,,41. Otherwise, we take an Z-sequence of length ¢- [R: I,] — 1, ¢ being the
maximal number of elements of A in any residue class of I,,, and swap every a € A

with a sequence element in a + I,,, choosing the one in a+ I,,41, if such exists. [

2.4 Definition. For a set Z of ideals in a commutative ring with identity R,
we define a weak Z-sequence to be a sequence (a,)nenr, where A is an initial
segment of Ny, such that for all I € 7 and all k£ > 0 the sequence elements a; with
E[R:I] <i< (k+1)[R:I] are pairwise incongruent mod I. (For infinite [R: I],
we use the convention O[R: 1] =0.)

We could also define partial weak Z-sequences and show an analogue of Proposi-
tion 2.3, but we will not need this. To compare Z-sequences and weak 7Z-sequences,
we note that
1) An infinite sequence is an Z-sequence if and only if for every I € Z of finite

index, every [R: I] consecutive terms of the sequence form a complete system

of residues mod I and the terms of the sequence are pairwise incongruent mod
every I € 7 of infinite index.

2) An infinite sequence is a weak Z-sequence if and only if for every I € Z of
finite index, every [R:I] consecutive terms of the sequence starting at an index
divisible by [R:I] form a complete system of residues mod I and the terms of
the sequence are pairwise incongruent mod every I € 7 of infinite index.
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2.5 Example. In the ring of integers Z, for every fixed k € Z, the sequence
an =k +n for n >0 is an Z-sequence for the set of all ideals of Z.

2.6 Example. If F, is the finite field of order ¢ then a weak Z-sequence for the
set of all ideals of Fy[z] that runs through F,[z] bijectively can be constructed as
follows (Wagner [16], see also Amice [1]): Let F, ={ro,...,7¢_1}, where o =0. If
n= Ziv:o ciqt with 0<¢; <q, set a, = Z,ﬁio r.,x'. This is a weak Z-sequence, since
aop,...,aqm_1 are precisely the elements of Fy[z] of degree less than m and thus
form a system of residues mod every ideal generated by an element of degree m, and
the ¢ sequence elements starting at index kg™ (with 0 <k < q) are just the first
q™ elements shifted by r.x™: aggm =72™ +ag, ..., Apr1)gm_1 =TET" +agm_1.

2.7 Example. An infinite Z-sequence exists for every descending chain Z of
ideals in aring R. (Apply Proposition 2.3 (b) to ap=0.) If R is a countably infinite
ring and 7 a descending chain of ideals of finite index in R with (), .y In = (0)
then there exists an Z-sequence that runs through R bijectively [8].

3. Binomial Polynomials.

Let R, be a discrete valuation ring (with value group Z and v(0) = 00), M, its
maximal ideal, K its quotient field and R an infinite subring of R,. (Throughout
this paper, discrete valuation always means discrete rank one valuation.) We
will define some useful polynomials in Int(R, R,), which are modeled after the

(:1:) 2@ —1)...(x —n+1)

n n!

polynomials

in Int(Z) and which we therefore call “binomial polynomials”. These polynomials
were introduced in [7], generalizing a construction of Pélya [15] that has also been
employed by Cahen [3], Gunji and McQuillan [10,12] and others. The sequence a;
of elements of R that will replace the sequence of natural numbers in the definition
of the binomial polynomials will have to be nicely distributed with respect to the
residue classes of RN M in R, in the following sense:

3.1 Definition. A [partial] v-sequence for R is a [partial] Z-sequence with
Z={M," N R|n € N}. In other words, (a,)nenr C R is a partial v-sequence for
R if and only if for all n € N and all 4, j € NV,

v(a; —aj) >n << [R:M,"NR]|i—j.

Similarly, a weak v-sequence for R is defined to be a weak Z-sequence with
Z={M,"NR|neN}. Inother words, (a,),>0 is a weak v-sequence for R if and
only if for all n € N and all 4, j and k € Ny,

ER:M,"NR|<i<j<(k+1)[R:M,"NR] = w(a; —aj)<n
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(If [R: M, N R] is infinite, the elements of a [partial, weak| v-sequence for R must
be pairwise incongruent mod M," N R.)

For brevity, we write I,, for M,"™ N R from this point on.

Note that by the Krull Intersection Theorem, (1., Ix = (0). Therefore, there
exists for every finite subset A of R an n € N such that distinct elements of A are
incongruent mod I,,. Since R is infinite, the indices [R: Iy] grow arbitrarily large
or are infinite from some k on.

3.2 Definition. The binomial polynomials constructed from a weak v-sequence
(a,) are

[T (« — i)
H?:_()l (an — a;)
3.3 Proposition. Let (a;)™, be a weak v-sequence for R and (f;)!, the
binomial polynomials constructed from it. For j, k € Ny let r;(k) be the remainder
of k under integral division by [R:1;|, if [R: ;] is finite, and r;(k) = k otherwise.
Then forallr€ R and 0 <k <m

(a) v(fiu(r))=|{j =1|r=a mod I; for some | with k —r;(k) <1<k},

(b) in particular, fi € Int(R, R,).

fo=1 and fnl(z) =

Proof. Let gi(x) = Hi:ol(x — a;), then v(fr(r)) = v(gr(r)) — v(gr(ax)). For any
s € R, v(gr(s)) =251 [{i|0<i<k, s=a; mod I;}|. Let q;(r) = [[R#I,]} , then
k=q;(k)[R:I;]+r;(k), and the sequence ag, ...,ar_1 consists of ¢;(r) complete
systems of residues mod I; comprising ag, ..., ax_r;x)—1 and rj(k) extra terms
a; for k —r;(k) <1<k, pairwise incongruent mod I;.

Now [{i |0 <i <k, s = a; mod I;}| is either ¢;(k) or ¢;(k) + 1, the latter
being the case if and only if s is congruent mod I; to one of the elements a; with
k—r;(k)<l<k. This extra +1 never occurs with s =ay, since ay, is not congruent
to any a; with k —r;(k) <1 < k by definition of weak v-sequence. 0O

3.4 Remark. It is easy to see that the binomial polynomials f; constructed
from a weak v-sequence (a;) for R, where R is an infinite subring of a discrete
valuation ring R,, give a basis of the free R,-module Int(R, R,), cf. [7]. Indeed,
deg fr = k shows that the fj are a K-basis of K|[z|. Since they are in Int(R, R,),
they form a basis of a free R,-module F' C Int(R, R,). To see Int(R,R,) C F,
consider f=>" dj fr with dx € K. A simple induction shows that for f €Int(R, R,)
the dj are actually in R,: do = f(ag), and di, = f(ax) — Zf:_ol d;fi(ar) (by the
facts that fy(ar) =1 and fj(ax) = 0 for j > k). The last argument also shows
that for a polynomial f € K|x| with deg f <m to be in Int(R, R,) it suffices that
f(a;) € R, for 0 <i<m.

If a domain S with quotient field K is the intersection of a family of discrete
valuation rings in K, S = [,y Ry, then for every subring R of S we have
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Int(R,S) = ,cy Int(R, R,). In particular this holds if S is a Krull ring and V
the set of its essential valuations.

3.5 Theorem. Let R be an infinite subring of a Krull ring S. If ag,...,a, € R
is a weak v-sequence for R for all essential valuations v of S simultaneously then
for all by, ...,b, € S there exists f € Int(R,S) with f(a;) =b; (0 <1i<n) and
deg f <n.

Proof. Let (f;)_, be the binomial polynomials constructed from (a;)!",. For
every essential valuation v of S, we know from Proposition 3.3 (b) that the f;, and
therefore R,-linear combinations of them, are in Int(R, R,). Therefore S-linear
combinations of the f; are in (), Int(R, R,) = Int(R,S). We define coefficients
di € S inductively, such that f = >;_,difr maps a; to b; for 0 < i < n: let
dy = bg, and d,,, = by, — ZL:_Ol difr(am). Since fr(arx) =1 and f,,(ar) = 0 for
m >k, we get f(am)=dn + 2212—01 di fr(am) = by, as required. [

3.6 Corollary. (Carlitz [5]) Let oq,...,oy be distinct elements of F,[z] and
d=max;<;<i deg, a;. Then for all (1, ..., € F,[x] there exists f(t) € Int(F,[z])
with deg, f < ¢* and f(a;)=3; fori=1,...,k.

Proof. Wagner’s sequence (Example 2.6) is a weak Z-sequence for the set of all
ideals of F,[x] and therefore a fortiori a weak v-sequence for all essential valuations
of I, [x]. Its initial segment ao,...,a,a_; consists of all elements of F,[z] of degree
at most d, with aq,...,a; among them. [J

Carlitz proved this by showing that a polynomial f€F,(x)[t] with deg,(f) <q¢™
is in Int(F,[x]) if and only if it maps all a € F,[z] with deg,(«) < m to values
in Fy[z] ([5] Theorem 7.1). Since there are ¢ elements of degree less than m in
[F,[z], the Lagrange interpolation polynomial for these arguments will be of degree
¢™ — 1 or less and will therefore be in Int(F,[z]) provided the values prescribed
for the ¢ arguments are in F,[z]. To relate Carlitz’s proof to the one using
Wagner’s sequence, note that a polynomial f € K|x| with deg f < m that takes
values f(a;) € R, on a v-sequence ag, ..., a,_1 for R is (by the argument in 3.4)
an R,-linear combination of the binomial polynomials fy,..., f;,,—1 constructed
from the v-sequence and therefore in Int(R, R,).

Unfortunately, weak v-sequences for all essential valuations of a Krull ring si-
multaneously seem to be rare, and we will use a different approach to interpolation
with integer-valued polynomials on Krull rings in section 6.

Locally, however, we can use wv-sequences to construct interpolating integer-
valued polynomials as follows: Let aq,...,a; be elements of an infinite subring
R of a discrete valuation ring R, that are pairwise incongruent mod all M' N R
of infinite index in R. By Proposition 2.3, «a,...,a; can be embedded in a
v-sequence ag, ..., ay. Therefore there exists for arbitrary values (1,...,0k € R,
an f € Int(R, R,) with deg f < ¢ that maps «a; to (3;, by Theorem 3.5.

In section 5 we will see that the minimal length ¢ of a wv-sequence for R
containing «s, ..., ax coincides with the minimal d such that for arbitrary values
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B1,..., 0k in R, there exists an f € Int(R, R,) with deg f <d that maps «; to G;;
so that, in a sense, interpolation by polynomials in Int(R, R,) using v-sequences
yields interpolation polynomials of best possible degree.

4. Embedding sets in v-sequences of minimal length.

As before, R is an infinite subring of a discrete valuation ring R,, I,, = M]'NR and
Z ={I, | n>0}. Recall that the length of a sequence (a;);-, is n, by convention.

4.1 Definition. Let A be a finite subset of R.

1. We define d(A) to be the minimal d € Ny such that for every choice of values
re € R, for a € A there exists f € Int(R, R,) with f(a) =r, for all a € A and
deg f < d, if such a d exists; otherwise d(A) = oco.

2. If A is not embeddable in any v-sequence in R then ¢(A) = oo; otherwise we
define ¢(A) to be the minimal ¢ such that there exists a v-sequence ay, ..., ay
in R containing A.

4.2 Corollary to Theorem 3.5. For every finite subset A of R, d(A) </{(A).

We will show that d(A) = ¢(A) in section 5; but before, we want to derive a
formula for ¢(A). In order to do this, we first consider sets that have a simple
structure with respect to the chain of ideals I,, = M, "R, n > 0.

4.3 Definition. We call a non-empty set L C R an Z-lattice of dimensions
(di)k>o if, for all k£ > 0, L intersects exactly dj residue classes of I1; in every
residue class of I that it intersects. If L is finite, then di = 1 for all but finitely
many k, and we speak of dimensions do,...,d,, meaning di =1 for k > n.

4.4 Definition. To every finite set A C R whose elements are pairwise incon-
gruent mod I,,11, where [R:I,] is finite, we associate dimensions (di)r>0 and an
T-lattice La C A, the spanning lattice of A, inductively as follows:

— L,=Aand d;, =1 for k > n,
— dj, is the maximal number of residue classes of I that Lj intersects in any
residue class of I, for 0 < k <mn;

— Ljp_1 consists of the elements of L, in those residue classes of I that L
intersects in dj residue classes of Iy, 1, for 1 <k < n;

and L4 is Lg, which is easily seen to be an Z-lattice of dimensions d,...,d,.

The minimal length of a v-sequence into which a finite set can be embedded
is most conveniently expressed in the mixed radix number system given by the
sequence [R:1[j], [ >0:

Every n € Ny has a unique representation n = > ;2 &/(n)[R : I], where
0<ei(n) < [I;:1+1]. Addition of numbers is performed by addition with carry on
the vectors of digits, where a carry from position [ to position [ + 1 occurs when
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the [-th digit reaches or exceeds [I; : [;11]. We will call this the Z-ary number
system and €;(n) the [-th digit in the Z-ary representation of 7.

If [R, : M, is finite, then [[;: ;1] divides [M,,': M," "] = [Ry: M,]; if [R,: M,]
is infinite, however, the digits need not be uniformly bounded or even bounded
at all. If infinite indices [R : I;] occur, the system is somewhat degenerate, with
0 <en(n) < oo for the maximal N € Ny with [R: Iy] finite and ¢;(n) = 0 for all
n, if [ > N. (We use the convention that 0-[R: [;] =0 even if [R: ;] = c0.)

Recall that by Proposition 2.3 (a) every partial v-sequence can be completed
to a v-sequence of the same length. Therefore, £(A) is equal to the minimal ¢ such
that A can be arranged as a partial v-sequence of length /.

4.5 Lemma. Let L be an Z-lattice of dimensions dy,...,dy,, with [R: I,,]
finite. For every partial v-sequence (I, )nen of minimal length formed by L, we
have N ={neNy|e;(n) <d; for all i }. Consequently, ¢(L)=3 ;" (dx—1)[R:I}].

Proof. Induction on m. For m=0, L consists of dy elements mutually incongruent
modulo ;. Any shortest partial v-sequence is just a listing of the elements of L,
in any order, as lo, ..., l4,—1, therefore N'={0,...,dy — 1} and ¢(L) =dy — 1.

Now let L be an Z-lattice of dimensions dy,...,d,,, m > 0. We can arrange
L as a partial v-sequence with index set NV = {n € Ny | Vi &;(n) < d;} as
follows: Choose a system of representatives L’ C L of the residue classes of I,
that L intersects. L’ is an Z-lattice of dimensions dy,...,d,,_1. Arrange L’ as a
partial v-sequence (I, )nen~ of minimal length and for each n € N assign indices
n+jlR:In], j=1,...,d, — 1 to the elements of L \ L' in l,, + I,,. Since by
induction hypothesis N/’ is the set of all n = Z}n:_ol k;i[R:1;] with 0<k; <d;, N
is the set of all n = Z;n:() k;[R:I;] with 0 < k; < d;. The length of this partial
v-sequence is max(N) = 37" ((dp — 1)[R: I;].

Now, given any v-sequence of minimal length (I,,),cn formed by L, we show
that it must be of this kind: From every residue class of I,,, that L intersects,
take the element of lowest index. These elements form a lattice L’ of dimensions
do,...,dn_1, arranged as a partial v-sequence with index set N/ CN. The indices
of the d,, elements of L in each residue class of I,, are part of an arithmetic
progression of period [R: I,,,] starting at n € N’. If, for some n € N/, the elements
of L in [, + I,,, do not have indices n + j[R: I,,], 7 =0,...,dy, — 1, then some
index is at least n + d[R : Iy] > d[R : Ly] > > o(dk — 1)[R : I};], which is
more than the length of the sequence constructed earlier. Therefore, we must
have N ={n+j[l:I,] |neN’, 0<j<d,}, the length of the sequence being
max(N’) + (d,, — 1)[R : I,;,]. This is minimal only if max(N’) is minimal, i.e., if
L' forms a partial v-sequence of minimal length. [

4.6 Theorem. Let ACR be a finite set whose elements are pairwise incongruent
mod I,y1, where [R: I,] is finite, and dy,...,d, the dimensions of A. Then
0(A) =37 _o(d; — DR ]

J=0

Proof. We know £(A) > €(La) = 3 7_o(d; — 1)[R: I;]. By Proposition 2.3 (a) it
suffices to arrange A as a partial v-sequence of length Zyzo(dj —1)[R:I;]. We

8



INTEGER-VALUED POLYNOMIAL INTERPOLATION

define a chain of subsets of A that allows us to do this inductively. Let A4, = A
and for 0 < k <n let Ap_; C A be a system of representatives of those residue
classes of I, that A intersects in the maximal number of elements. It is clear that
this maximal number is di. Ag consists of dy elements mutually incongruent mod
I, . Listing Ay as ao,...,aq,—1 in any order makes Ay into a partial v-sequence of
length dy — 1. Assuming we have arranged Aj_1 as a partial v-sequence (@, )nen
of length Zf;é (d; — 1)[R: I;], we will extend it to an arrangement of Ay as a
partial v-sequence of length Z?:o(dj —1[R:1].

Ay, contains d, elements in a,, + I, for each n € N, plus less than dj, elements
each in some further residue classes of I;.. Let B C Aj be a system of repre-
sentatives of these further classes. By considering a completion of (ay)nen to a
v-sequence of length [R: I;] — 1 (which exists by Proposition 2.3) and assigning
each b € B the index of the unique sequence element congruent to it mod I, we
get a partial v-sequence arrangement of Ap_; U B of length less than [R : I].
We assign consecutive indices in an arithmetic progression of period [R : Ij],
starting at the representative in Ax_1 U B, to the elements of A; in each residue
class of Ir. The highest index in this partial v-sequence arrangement of Ay is
the highest index in a progression starting at a representative in Ag_1, namely
max(N) + (dy — 1)[R: I] = Z?:o(dj — 1)[R : I;], since a progression starting at
b € B with index n < [R: I}] and containing the | < dj, elements of (b+ Ix) N A
only reaches index n+ (I — 1)[R: I] <I[R: ;) < (dx — 1)[R: I]. O

5. The degree of the interpolating polynomial.

Ifn=>""qe(n)[R:I;] with 0<e;(n) <[I;:[14+1], we set r;(n) = {:_01 er(n)[R:1;].
This is consistent with our earlier convention that r;(n) is the remainder of n under
integral division by [R:I;] if [R: I;] is finite, and 7;(n) = n otherwise.

5.1 Proposition. Let (a,) be a v-sequence for R (of length at least k) and f
the binomial polynomial of degree k constructed from it. Then

(a) v(fr(an)) = [{l 2 1] ri(k) > m(n)}],
(b) v(fx(an)) =0 <= VI g(k)<e(n).

Proof. (a) is true for k >n, since then v(fi(a,))=v(0) =00 and there are infinitely
many [ with 7;(k) =k >n=r;(n). (The indices [R: I;] are unbounded because R
is infinite and ();>, /i = (0).) Now assume k <n.

an=a; mod I; for at most one i with k—r;(k) <i<k—r;(k)+[R:I;], by definition
of weak v-sequence. Since (a,) is really a v-sequence and n =k — ri(k) + ri(n)
mod [R:[;], we know that a, = ay_y, )+ xn) mod I;. The condition a, = a; mod
I; for some i with k —r;(k) <i < k is therefore equivalent to r;(k) > r;(n), such
that (a) follows from Proposition 3.3 (a).

If r;(k) > ri(n) then 3Im <1 with &,,(k) > e,,(n) and if ,,(k) > £,,(n) then
Tm (k) > rm(n). Therefore, Vi r(k) < ri(n), which is equivalent to v(fx(a,)) =0
by (a), is equivalent to VI g;(k) < g;(n). Thus (b) follows from (a). O
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From Proposition 5.1 one can easily derive that v(fx(a,)) equals the number of
carries that occur in the addition of £ and n — k in the Z-ary number system. For
a, =n and v =wv, this is Kummer’s result [11] that the exact power of p dividing
the binomial coefficient (Z) equals the number of carries that occur in the addition
of k and n — k in base p arithmetic. Kummer’s expression of v,((})) in terms of
the digits of n, k and n—k in base p also generalizes, provided [I,,: I,,+1] = [R: 1]
for all n, cf. [8].

5.2 Lemma. Forn >0, let I, = M)NR. If [R:1,] =00 and a, b € R are
congruent mod I, 1p,, m >0, then f(b) = f(a) mod I,,41 for all f € Int(R, R,).

Proof. Extend a = a¢ to an infinite v-sequence (ay)72, for R and construct
binomial polynomials f; € Int(R,R,) from it. Let f € Int(R,R,), then f =
Y k>0 difr with dp € R,, since the fi, are an R,-basis of Int(R,R,). Also,
do = f(ao) = f(a).

By Proposition 3.3, v(fx(b)) equals the number of j > 1 such that for some I
with k—r;(k) <I<k, b=a; mod I;. For k>0, every j with n <j <n+m satisfies
this condition, because b= ay mod I; and r;(k) =k. We see that v(fx(b)) >m+1
for all k£ > 0. Therefore f(b) =dyfo=do= f(a) mod I,,4;. O

5.3 Corollary. Let ay,...,a, € R. Only if the «; are pairwise incongruent
mod all I,, = M’ N R with [R: I,] = oo can there exist for all (1,...,03, € R, an
feInt(R, R,) with f(a;) = 0.

5.4 Lemma. Let L be a finite Z-lattice embedded in a v-sequence aq, . ..,a; of
minimal length l=/(L), as L={a, |n€N}, and (fx)}_, the binomial polynomials
constructed from ag,...,a;. Ifne€ N and k ¢ N then v(fi(a,)) > 0.

Proof. It k ¢ N then ¢;(k) > d; > ¢;(n) for some i by Lemma 4.5; therefore
v(fx(an)) > 0 by Proposition 5.1. O

5.5 Remark. If A is a finite subset of R then d(A) is finite if and only if the
elements of A are pairwise incongruent mod all I,, = M* N R with [R:[,] = oo and
¢(A) is finite under precisely the same conditions: We know from Theorem 3.5
that d(A) < /¢(A). Now if a, b € A are congruent mod I,, with [R: I,] = oo then
by Lemma 5.2 there does not exist f € Int(R, R,) with f(a) =0 and f(b) =1, so
d(A) = oo. Conversely, if the elements of A are pairwise incongruent mod all I,
of infinite index then ¢(A) is finite by Theorem 4.6.

5.6 Theorem. For every finite subset A of R, d(A)=1/{(A).

Proof. d(A) and ¢(A) are each finite if and only if A is a finite set that does not
contain two elements congruent mod any I,, = M’ N R of infinite index. Let A
be such a set. In view of Theorem 3.5, we need only show d(A) > ¢(A). Let
ag, . ..,a; be a v-sequence containing A with [ = ¢(A). By Lemma 4.5, this is
also the minimal length for a v-sequence containing the spanning lattice L of A,
therefore ag € L and a; € L (otherwise we could chop off the ends of the sequence

10
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and re-index starting with 0 to get a shorter v-sequence containing L). Let the
sequence (aj)é-zo be extended to an infinite v-sequence and let f; be the binomial
polynomial of degree j constructed from it.

Suppose f € Int(R, R,) with f(a;) =1 and f(a;) =0 for all a; € L with i <I;
we claim that deg f > 1. The f; form an R,-basis of Int(R, Ry), so f=>_,5,d;f;
with d; € R,. We show for £ <[ that if a,, € L then dj =0d;,; mod I;. Induction on
k: if k=0 then dy = f(ag) = dp,;. For any k with ay € L, every j < k satisfies (by
Lemma 5.4) either a; € L, in which case d; =0 mod I; by induction hypothesis,
or fj(ar) € I;. Therefore f(ay) = dj + Z;:S d;fi(a) shows dy = f(ar) = 0k,
mod I;. In particular, we have shown d; # 0, which implies deg f > 1. [

We combine this with the formula for ¢(A) from Theorem 4.6 and the corollary
to Lemma 5.2. (The dimensions of a finite subset of R are defined in 4.4.)

5.7 Corollary. Let R be an infinite subring of a discrete valuation ring R,

I,=M]NR and aq,...,qp (distinct) in R.

1. If and only if the «; are pairwise incongruent mod all I,, of infinite index in R
there exists for all (31,...,0rk € R, an f € Int(R, R,) with f(a;) = 0.

2. In that case, the minimal d such that for all (31,...,0r € R, there exists an
f € mt(R,R,) with f(a;) = 3 and deg f < d, is d =3 7_((d; — D[R : I}],
where dy, . .., d, are the dimensions of the set {ay,...,ax}.

6. Interpolation by integer-valued polynomials on Krull rings

We now turn to Krull rings and characterize those arguments rq, ..., 7, € R that for
every choice of values s, ..., s, € R admit an interpolating polynomial f € Int(R).
We denote the set of prime ideals of height 1 in R by Spec'(R).

6.1 Lemma. Let v be a discrete valuation on a field K. Suppose f=3Y ,_, apz”
in K|[z] splits over K as f(x) = an(x —b1)...(x —bp)(x —c1)...(x — ¢;), where
v(b;) <0 and v(c;) >0. Let pp=ming<p<y, v(ax) and set f (z)=(z—c1)...(x—¢)
then v(f(r)) = p+v(f.(r)) for all r € R,.

Proof. If r € Ry, v(r —b;) = v(b;) and v(f(r)) =v(an) + >  v(b;) +v(f.(r)).
We will show that >, v(b;) = p—v(ay). Let a, f(z) =a"+al,_;2" 1 +.. . +af
then p — v(a,) = ming<g<n v(a},) and aj, is up to sign the elementary symmetric
polynomial of degree n — k in the b; and ¢;, so that ming<x<, v(a)) =v(al,_,,) =
v(em(bi, ... bm,c1,. ) = > v(b;). O

6.2 Lemma. Let R be adomain, ry,...,r,y1 €R and aj=1;—rp41 (1<j5<n).
Then there exists f € Int(R) with f(r;) =0 (1 <j <n) and f(rp4+1) =1 if and
only if there exists g € Int(R) with g(a;) =0 (1 <j <n) and g(0) =1.

Proof. (=) g(x): = f(z +1nt1) (&) f(2):=9g(x = rny1) O

11
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6.3 Theorem. Let R be a Krull ring and let ry,... 7,11 (distinct) € R such
that r; # r,11 mod P (1 <i<n) for all P € Spec'(R) with [R: P] = co. Then
there exists f € Int(R) with f(r;) =0 (1 <i<n) and f(rp+1)=1.

Proof. Let a; =1j —rpy1 for 1 < j < n. The a; are distinct non-zero elements
of R, none of which are contained in any P € Spec'(R) with [R: P] = co. By
Lemma 6.2, we want an f € Int(R) with f(a;) =0 for 1 < j <n and f(0) = 1.
We will first construct a polynomial g € K[z| with g(a;) =0 for 1 < j <n, such
that for every essential valuation v of R and every r € R, v(g(r)) > v(g(0)) and
then set f(z) = g(x)/g(0).

Let P = {P € Spec'(R) | 3j a; € P} then P is a finite set of maximal ideals
of finite index. Also let, for P € P, mp = max{m € N|3j a; € P™} and define
I =Npep P"? =[]pep P"?. Let N = [R:I]. Using the Chinese Remainder
Theorem mod P™?P*! for P € P, we can get a system of representatives (b;)Y,
of R mod I with the property that for all 7 and all P € P, b; & P™?*T! Note
that for P € P and k < m,, the number of b; in any given residue class of P¥ is
N/ [R: P*], since I is an ideal contained in P*. In other words,

N
[R: Pk~

Vr€e RVPeP Vk<m, [{ilve(r—1b;) >k} =

Let @ = {Q € Spec'(R)\ P | 3i b; € Q} and for Q € Q let I, be the maximal
I € N such that b; € Q' for some i. Let ¢ € R with vy(c) =1, + 1 for all Q € Q,
and vp(c) = 0 for all P € P. Also, let Q' = {Q € Spec'(R) | vy(c) > 0}, then
QC Q and ' NP =0.

We set b, = ¢71bh;. Then v, (b)) <0 for all Q € Q" and 0 < v, (b)) <mp + 1 for
all PEP. If PP and r € R, we have vp(r —b}) =vp (¢ (er —b;)) = ve(er—b;).
Therefore, for all r € R,

N

VPeP Vk<mp |{ilve(r—b) >k} = |{i|ve(cr —b;) > k}| = R PR

and in particular |{i |v.(b)) > k}| = N/[R: P"].

Let m be the maximal number of a; in any residue class of I in R and set
h(z) = Hf;l(m —b,)™. To get a polynomial g with g(a;) =0 for 1 < j <mn, we
now replace certain roots of h with the elements aq,...,a,. Since the b; are a
complete system of residues mod I in R, there exists for every j € {1,...,n} an
i; with b;, = ca; mod I.

Let g(x) = Hzijf (x — ¢;) be the polynomial resulting from h by replacing, for
each j € {1,...,n}, one copy of b;j in the multiset of roots of h by a;. (If i; =iy
for k # j this means ca; = car, mod I and therefore a; = ar mod I, and by the
definition of m, b;j occurs with sufficient multiplicity as a root of h that every
ar € aj + I can be exchanged for a different copy of bgj .) Note that for P € P,
0 <wp(c;) <mp+1 for all .

12
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We claim that for all essential valuations v of R and all r€ R, v(g(r)) >v(g(0)).
First, assume P € P. For all r € R, if kK < m, then

vp(r—b;j)Zk: = vp(r—aj) >k (%)

(and consequently |{i | vp(c;) > k}| = m|{i | vp(b]) > k}|). This is so because
vp(r —b;,) = vp(c™H(er = by;)) = vp(er — by;) = vp(er — ca; + d) with d € I,
and then v,(d) > mp > k implies that vp(cr — ca] + d) > k if and only if

vp(r —aj) =vp(cr — caj) > k. We abbreviate Y . Iz Pk] by v, and get

mN
r)) = va(r— ¢i) = Z\{z | vp(r — ;) > k}| >

E>1
mp mp

>S i lvpr—e) 2 kY Em S i [opr — 1) 2 kY| = mye,
k=1 k=1

while v (g(0)) =

= i lveles) 2k} = Zl{z | 0r (i)

k>1

Z‘{va ) >k} = me.

Now consider Q € Q. For all i, 5, vo(b;) <0 and vg(a;) =0. If g(x) = S0 dpa®
and g = minj<k<mn Vo (di) then for all » € R we have (using Lemma 6.1)

val9r) = s+ va (L] — ) = 4 = u+vQ(f[aj) = 04 (9(0)).

j=1
For the remaining essential valuations v of R, v(c;) = 0 for all i. Therefore, if
reR, v(g(r)) = ZZ”ZZY v(ir—c¢;)>0= ZZ 1 (c) = v(g(O)).

Now let f(x) = g(x)/g(0). For j =1,...,n, f(a;) = 0 because g(a;) = 0,
and clearly f(0) =1. Also, f € Int(R), because for all » € R and every essential
valuation v of R, v(g(r)) > v(g(0)) and therefore v(f(r)) >0. O

6.4 Remark. If P is a prime ideal in a domain R with [R: P] = oo it is well
known that Int(R, Rp) = Rp[z]. Every f € Int(R, Rp) of degree n is determined
by its values at n + 1 arguments ag,...,a, € R and is therefore equal to the
Lagrange interpolation polynomial

Zf az j;éz _a’J) '

j;éz( a’])

If the a; are chosen pairwise incongruent mod P, then ¢(z) is clearly in Rp[z].

6.5 Corollary. Let ry,...,7, be distinct elements of a Krull ring R. If and only
if the r; are pairwise incongruent mod all P € Spec'(R) with [R: P] = oo there
exists for all s1,...,8, € R an f € Int(R) with f(r;) =s; for 1 <i <n.

Proof. The “if” part follows from the Theorem, since R-linear combinations of
polynomials in Int(R) are again in Int(R). Conversely, if a, a’ € R are congruent
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mod P € Spec' (R) with [R: P] = oo then there is no f € Int(R, Rp) with f(a) =0
and f(a’) = 1, since f(a) = f(a’) mod P for all f € Int(R, Rp) 2 Int(R), by
Lemma 5.2 (or by the fact that Int(R, Rp) = Rplz], see 6.4). O
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