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INTERPOLATION

by

INTEGER-VALUED POLYNOMIALS

Sophie Frisch

Abstract. Let R be a Krull ring with quotient field K and a1, . . . , an in R.
If and only if the ai are pairwise incongruent mod every height 1 prime ideal of
infinite index in R does there exist for all values b1, . . . , bn in R an interpolating
integer-valued polynomial, i.e., an f ∈ K[x] with f(ai) = bi and f(R) ⊆ R. If S

is an infinite subring of a discrete valuation ring Rv with quotient field K and
a1, . . . , an in S are pairwise incongruent mod all Mk

v ∩S of infinite index in S , we
derive a formula (depending on the distribution of the ai among residue classes of
the ideals Mk

v ∩S) for the minimal d, such that for all b1, . . . , bn ∈Rv there exists
a polynomial f ∈K[x] of degree at most d with f(ai) = bi and f(S) ⊆ Rv .

1. Introduction.

Suppose D is an integral domain with quotient field K . Unless D is a field, it
is not always possible, given a0, . . . , an (distinct) and b1, . . . , bn in D, to find a
polynomial f ∈D[x] with f(ai)= bi . This is so because the function induced on D

by a polynomial with coefficients in D must preserve congruences mod every ideal
of D. One might say that the next best thing to interpolation with polynomials
in D[x] is interpolation with polynomials in K[x] that map every element of D

into D and thus induce a function on D.
We will show that this kind of interpolation is possible for arbitrary arguments

and values in D whenever D is a Dedekind ring all of whose residue fields are
finite, such as the ring of algebraic integers in a number field. (For D = Z this is
easy to see, and for D = Fq[x] it has been shown by Carlitz [5].)

More generally, we find that distinct elements a0, . . . , an of a Krull ring R have
the property that for all b0, . . . , bn in R there exists a polynomial f ∈ K[x] with
f(ai) = bi and f(R)⊆ R if and only if the ai are pairwise incongruent mod every
height 1 prime ideal P of R with [R : P ] =∞.

We use the customary notation Int(E,D) = {f ∈ K[x] | f(E) ⊆ D} and
Int(D) = Int(D,D), where D is a domain with quotient field K and E a subset of
K . A polynomial f ∈ K[x] that maps E into D is called “integer-valued” on E ,
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integer-valued polynomial interpolation

following Pólya [15] and Ostrowski [14], who studied Int(D) where D is the ring
of algebraic integers in a number field. More recently, integer-valued polynomials
have been investigated by Cahen [2,3], Chabert [6], McQuillan [12,13], Gilmer,
Heinzer and Lantz [9], and others. For a survey of the subject, see the monograph
by Cahen and Chabert [4].

To interpolate at arguments a0, . . . , an , we use linear combinations of the
polynomials fk(x) =

∏k−1
i=0 (x− ai)/

∏k−1
i=0 (ak − ai), 0 ≤ k ≤ n. For this purpose

we introduce, when R is an infinite subring of a discrete valuation ring Rv , special
sequences (ak) ⊆ R that ensure that the polynomials fk constructed from them
are in Int(R,Rv) and then show how to embed a finite subset of R in a sequence
of this kind.

This approach seems justified by the result that the minimal length of such a
sequence containing α0, . . . , αm ∈ R is equal to the minimal d such that for all
β0, . . . , βm ∈ Rv there exists an f ∈ Int(R,Rv) with f(αi) = βi and deg f ≤ d. It
also yields a formula for this minimal d, depending on the distribution of the αi

among the residue classes of R ∩Mk
v in R.

2. Sequences.

In this section, R may be any commutative ring with identity. We denote the set
of non-negative integers {0, 1, 2, . . .} by N0 . The kind of sequences below has
already been used in [7]; we need to develop some more of their properties.

2.1 Definition. For a set I of ideals in a commutative ring with identity R,
we define a partial I -sequence to be an indexed set (an)n∈N , with N ⊆ N0 , of
elements in R, such that for all I ∈ I and all n, m ∈ N

an ≡ am mod I ⇐⇒ [R : I]
∣∣ n−m.

(If [R : I] is infinite, we regard it as dividing 0, but no other integer.) A partial
I -sequence is called an I -sequence if N is an initial segment of N0 .

2.2 Convention. The length of a finite partial sequence (an)n∈N is max(N ).

2.3 Proposition. For every descending chain I = {In | n ∈ N} of ideals in R

(a) every finite partial I -sequence can be completed to an I -sequence,

(b) every finite I -sequence can be extended to an infinite I -sequence,

(c) every finite set A ⊆ R of elements pairwise incongruent mod In+1 , where

[R : In] is finite, can be embedded in a finite I -sequence, and one of length

less than [R : In+1], if [R : In+1] is also finite.

Proof. Given (an)n∈N , and l ≥ max(N ), we show how to complete (an) to an
I -sequence of length l. General principle: For a finite sequence of length l to be
an I -sequence (I being a descending chain of ideals), it suffices that it satisfy the
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requirements with respect to I1, . . . , Ik , if k satisfies [R : Ik] > l or for all m ≥ k,
Im = Ik .

Case 1: there exists Ik of finite index with [R : Ik] > l or Im = Ik for m ≥ k.
For j = 1, . . . , k inductively, we assign a different residue class of Ij in R to every
residue class mod [R : Ij ] in Z such that 1) for all n ∈ N , n + [R : Ij ]Z is assigned
an + Ij (this is consistent because (an)n∈N is a partial I -sequence) and 2) if
r + Ij−1 was assigned to m + [R : Ij−1]Z, then the residue classes of Ij in r + Ij−1

are assigned to the residue classes of [R : Ij ]Z in m + [R : Ij−1]Z.
Case 2: there is Ik−1 with [R : Ik−1] < l and [R : Ik] = ∞. We proceed as

above for j = 0, . . . , k − 1 and then assign a different residue class of Ik to every
n≤ l, n ∈N0 , such that 1) every n ∈N is assigned an + Ik and 2) if r + Ik−1 was
assigned to m + [R : Ik−1]Z, every n ∈ m + [R : Ik−1]Z is assigned a residue class
of Ik in r + Ik−1 .

We now define sequence elements for indices m 6∈N , 0≤m≤ l, by choosing am

from the residue class of Ik assigned to m+[R :Ik]Z (in case 1) or to m (in case 2).
The resulting sequence (an)l

n=0 satisfies the I -sequence requirements with respect
to I1, . . . Ik , which is all we need by the general principle stated above. We can
extend (an)l

n=0 to an I -sequence of length l′ > l, and inductively to an infinite
I -sequence by iterating the construction. This shows (a) and (b). It also shows
that I -sequences of arbitrary length exist, since we can start with any a0 ∈R and
extend it to an infinite I -sequence.

For (c), if [R : In+1] is finite, we take an I -sequence of length [R : In+1] − 1
and swap every member of A with the unique sequence element congruent to it
mod In+1 . Otherwise, we take an I -sequence of length c · [R : In]− 1, c being the
maximal number of elements of A in any residue class of In , and swap every a∈A

with a sequence element in a+ In , choosing the one in a+ In+1 , if such exists. �

2.4 Definition. For a set I of ideals in a commutative ring with identity R,
we define a weak I -sequence to be a sequence (an)n∈N , where N is an initial
segment of N0 , such that for all I ∈ I and all k≥ 0 the sequence elements ai with
k[R : I] ≤ i < (k + 1)[R : I] are pairwise incongruent mod I . (For infinite [R : I],
we use the convention 0[R : I] = 0.)

We could also define partial weak I -sequences and show an analogue of Proposi-
tion 2.3, but we will not need this. To compare I -sequences and weak I -sequences,
we note that
1) An infinite sequence is an I -sequence if and only if for every I ∈ I of finite

index, every [R : I] consecutive terms of the sequence form a complete system
of residues mod I and the terms of the sequence are pairwise incongruent mod
every I ∈ I of infinite index.

2) An infinite sequence is a weak I -sequence if and only if for every I ∈ I of
finite index, every [R :I] consecutive terms of the sequence starting at an index
divisible by [R : I ] form a complete system of residues mod I and the terms of
the sequence are pairwise incongruent mod every I ∈ I of infinite index.
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2.5 Example. In the ring of integers Z, for every fixed k ∈ Z, the sequence
an = k + n for n ≥ 0 is an I -sequence for the set of all ideals of Z.

2.6 Example. If Fq is the finite field of order q then a weak I -sequence for the
set of all ideals of Fq[x] that runs through Fq[x] bijectively can be constructed as
follows (Wagner [16], see also Amice [1]): Let Fq = {r0, . . . , rq−1}, where r0 = 0. If
n=

∑N
i=0 ciq

i with 0≤ci <q , set an =
∑N

i=0 rci
xi . This is a weak I -sequence, since

a0, . . . , aqm−1 are precisely the elements of Fq[x] of degree less than m and thus
form a system of residues mod every ideal generated by an element of degree m, and
the qm sequence elements starting at index kqm (with 0≤ k < q) are just the first
qm elements shifted by rkxm : akqm = rkxm +a0 , . . ., a(k+1)qm−1 = rkxm +aqm−1 .

2.7 Example. An infinite I -sequence exists for every descending chain I of
ideals in a ring R. (Apply Proposition 2.3 (b) to a0=0.) If R is a countably infinite
ring and I a descending chain of ideals of finite index in R with

⋂
n∈N In = (0)

then there exists an I -sequence that runs through R bijectively [8].

3. Binomial Polynomials.

Let Rv be a discrete valuation ring (with value group Z and v(0) = ∞), Mv its
maximal ideal, K its quotient field and R an infinite subring of Rv . (Throughout
this paper, discrete valuation always means discrete rank one valuation.) We
will define some useful polynomials in Int(R,Rv), which are modeled after the
polynomials (

x

n

)
=

x(x− 1) . . . (x− n + 1)
n!

in Int(Z) and which we therefore call “binomial polynomials”. These polynomials
were introduced in [7], generalizing a construction of Pólya [15] that has also been
employed by Cahen [3], Gunji and McQuillan [10,12] and others. The sequence ai

of elements of R that will replace the sequence of natural numbers in the definition
of the binomial polynomials will have to be nicely distributed with respect to the
residue classes of R ∩Mn

v in R, in the following sense:

3.1 Definition. A [partial ] v-sequence for R is a [partial] I -sequence with
I = {Mv

n ∩ R | n ∈ N}. In other words, (an)n∈N ⊆ R is a partial v-sequence for
R if and only if for all n ∈ N and all i, j ∈ N ,

v(ai − aj) ≥ n ⇐⇒ [R : Mv
n ∩R]

∣∣ i− j .

Similarly, a weak v-sequence for R is defined to be a weak I -sequence with
I = {Mv

n ∩R | n ∈N}. In other words, (an)n≥0 is a weak v-sequence for R if and
only if for all n ∈ N and all i, j and k ∈ N0 ,

k [R : Mv
n ∩R] ≤ i < j < (k + 1) [R : Mv

n ∩R] =⇒ v(ai − aj) < n
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(If [R :Mv
n∩R] is infinite, the elements of a [partial, weak] v-sequence for R must

be pairwise incongruent mod Mv
n ∩R.)

For brevity, we write In for Mv
n ∩R from this point on.

Note that by the Krull Intersection Theorem,
⋂∞

k=0 Ik = (0). Therefore, there
exists for every finite subset A of R an n ∈N such that distinct elements of A are
incongruent mod In . Since R is infinite, the indices [R : Ik] grow arbitrarily large
or are infinite from some k on.

3.2 Definition. The binomial polynomials constructed from a weak v-sequence
(an) are

f0 = 1 and fn(x) =
∏n−1

i=0 (x− ai)∏n−1
i=0 (an − ai)

for n > 0.

3.3 Proposition. Let (ai)m
i=0 be a weak v-sequence for R and (fi)m

i=0 the

binomial polynomials constructed from it. For j, k∈N0 let rj(k) be the remainder

of k under integral division by [R : Ij ], if [R : Ij ] is finite, and rj(k) = k otherwise.

Then for all r ∈ R and 0 ≤ k ≤m

(a) v(fk(r)) =
∣∣{j ≥ 1 | r ≡ al mod Ij for some l with k − rj(k) ≤ l < k}

∣∣,
(b) in particular, fk ∈ Int(R,Rv).

Proof. Let gk(x) =
∏k−1

i=0 (x − ai), then v(fk(r)) = v(gk(r)) − v(gk(ak)). For any

s ∈ R, v(gk(s)) =
∑

j≥1

∣∣{i | 0 ≤ i < k, s ≡ ai mod Ij}
∣∣. Let qj(r) =

[
k

[R:Ij ]

]
, then

k = qj(k)[R : Ij ] + rj(k), and the sequence a0, . . . , ak−1 consists of qj(r) complete
systems of residues mod Ij comprising a0, . . . , ak−rj(k)−1 and rj(k) extra terms
al for k − rj(k) ≤ l < k, pairwise incongruent mod Ij .

Now
∣∣{i | 0 ≤ i < k, s ≡ ai mod Ij}

∣∣ is either qj(k) or qj(k) + 1, the latter
being the case if and only if s is congruent mod Ij to one of the elements al with
k−rj(k)≤ l <k. This extra +1 never occurs with s=ak , since ak is not congruent
to any al with k − rj(k) ≤ l < k by definition of weak v-sequence. �

3.4 Remark. It is easy to see that the binomial polynomials fk constructed
from a weak v-sequence (ai) for R, where R is an infinite subring of a discrete
valuation ring Rv , give a basis of the free Rv -module Int(R,Rv), cf. [7]. Indeed,
deg fk = k shows that the fk are a K -basis of K[x]. Since they are in Int(R,Rv),
they form a basis of a free Rv -module F ⊆ Int(R,Rv). To see Int(R,Rv) ⊆ F ,
consider f =

∑
dkfk with dk∈K . A simple induction shows that for f ∈ Int(R,Rv)

the dk are actually in Rv : d0 = f(a0), and dk = f(ak) −
∑k−1

i=0 difi(ak) (by the
facts that fk(ak) = 1 and fj(ak) = 0 for j > k). The last argument also shows
that for a polynomial f ∈K[x] with deg f < m to be in Int(R,Rv) it suffices that
f(ai) ∈ Rv for 0 ≤ i < m.

If a domain S with quotient field K is the intersection of a family of discrete
valuation rings in K , S =

⋂
v∈V Rv , then for every subring R of S we have
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Int(R,S) =
⋂

v∈V Int(R,Rv). In particular this holds if S is a Krull ring and V
the set of its essential valuations.

3.5 Theorem. Let R be an infinite subring of a Krull ring S . If a0, . . . , an ∈ R

is a weak v-sequence for R for all essential valuations v of S simultaneously then

for all b0, . . . , bn ∈ S there exists f ∈ Int(R,S) with f(ai) = bi (0 ≤ i ≤ n) and

deg f ≤ n.

Proof. Let (fi)n
i=0 be the binomial polynomials constructed from (ai)n

i=0 . For
every essential valuation v of S , we know from Proposition 3.3 (b) that the fi , and
therefore Rv -linear combinations of them, are in Int(R,Rv). Therefore S -linear
combinations of the fi are in

⋂
v Int(R,Rv) = Int(R,S). We define coefficients

dk ∈ S inductively, such that f =
∑n

k=0 dkfk maps ai to bi for 0 ≤ i ≤ n: let
d0 = b0 , and dm = bm −

∑m−1
k=0 dkfk(am). Since fk(ak) = 1 and fm(ak) = 0 for

m > k, we get f(am) = dm +
∑m−1

k=0 dkfk(am) = bm as required. �

3.6 Corollary. (Carlitz [5]) Let α1, . . . , αk be distinct elements of Fq[x] and

d = max1≤i≤k degx αi . Then for all β1, . . . , βk ∈Fq[x] there exists f(t)∈ Int(Fq[x])
with degt f < qd and f(αi) = βi for i = 1, . . . , k.

Proof. Wagner’s sequence (Example 2.6) is a weak I -sequence for the set of all
ideals of Fq[x] and therefore a fortiori a weak v-sequence for all essential valuations
of Fq[x]. Its initial segment a0, . . . , aqd−1 consists of all elements of Fq[x] of degree
at most d, with α1, . . . , αk among them. �

Carlitz proved this by showing that a polynomial f ∈Fq(x)[t] with degt(f)<qm

is in Int(Fq[x]) if and only if it maps all α ∈ Fq[x] with degx(α) < m to values
in Fq[x] ([5] Theorem 7.1). Since there are qm elements of degree less than m in
Fq[x], the Lagrange interpolation polynomial for these arguments will be of degree
qm − 1 or less and will therefore be in Int(Fq[x]) provided the values prescribed
for the qm arguments are in Fq[x]. To relate Carlitz’s proof to the one using
Wagner’s sequence, note that a polynomial f ∈ K[x] with deg f < m that takes
values f(ai) ∈Rv on a v-sequence a0, . . . , am−1 for R is (by the argument in 3.4)
an Rv -linear combination of the binomial polynomials f0, . . . , fm−1 constructed
from the v-sequence and therefore in Int(R,Rv).

Unfortunately, weak v-sequences for all essential valuations of a Krull ring si-
multaneously seem to be rare, and we will use a different approach to interpolation
with integer-valued polynomials on Krull rings in section 6.

Locally, however, we can use v-sequences to construct interpolating integer-
valued polynomials as follows: Let α1, . . . , αk be elements of an infinite subring
R of a discrete valuation ring Rv that are pairwise incongruent mod all Mn

v ∩ R

of infinite index in R. By Proposition 2.3, α1, . . . , αk can be embedded in a
v-sequence a0, . . . , a` . Therefore there exists for arbitrary values β1, . . . , βk ∈ Rv

an f ∈ Int(R,Rv) with deg f ≤ ` that maps αi to βi , by Theorem 3.5.
In section 5 we will see that the minimal length ` of a v-sequence for R

containing α1, . . . , αk coincides with the minimal d such that for arbitrary values
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β1, . . . , βk in Rv there exists an f ∈ Int(R,Rv) with deg f ≤ d that maps αi to βi ;
so that, in a sense, interpolation by polynomials in Int(R,Rv) using v-sequences
yields interpolation polynomials of best possible degree.

4. Embedding sets in v-sequences of minimal length.

As before, R is an infinite subring of a discrete valuation ring Rv , In =Mn
v ∩R and

I = {In | n≥ 0}. Recall that the length of a sequence (ai)n
i=0 is n, by convention.

4.1 Definition. Let A be a finite subset of R.
1. We define d(A) to be the minimal d ∈ N0 such that for every choice of values

ra ∈ Rv for a ∈ A there exists f ∈ Int(R,Rv) with f(a) = ra for all a ∈ A and
deg f ≤ d, if such a d exists; otherwise d(A) =∞.

2. If A is not embeddable in any v-sequence in R then `(A) = ∞; otherwise we
define `(A) to be the minimal ` such that there exists a v-sequence a0, . . . , a`

in R containing A.

4.2 Corollary to Theorem 3.5. For every finite subset A of R, d(A)≤ `(A).

We will show that d(A) = `(A) in section 5; but before, we want to derive a
formula for `(A). In order to do this, we first consider sets that have a simple
structure with respect to the chain of ideals In = Mv

n ∩R, n ≥ 0.

4.3 Definition. We call a non-empty set L ⊆ R an I -lattice of dimensions
(dk)k≥0 if, for all k ≥ 0, L intersects exactly dk residue classes of Ik+1 in every
residue class of Ik that it intersects. If L is finite, then dk = 1 for all but finitely
many k, and we speak of dimensions d0, . . . , dn , meaning dk = 1 for k > n.

4.4 Definition. To every finite set A ⊆ R whose elements are pairwise incon-
gruent mod In+1 , where [R : In] is finite, we associate dimensions (dk)k≥0 and an
I -lattice LA ⊆ A, the spanning lattice of A, inductively as follows:

– Ln = A and dk = 1 for k > n,

– dk is the maximal number of residue classes of Ik+1 that Lk intersects in any
residue class of Ik , for 0 ≤ k ≤ n;

– Lk−1 consists of the elements of Lk in those residue classes of Ik that Lk

intersects in dk residue classes of Ik+1 , for 1 ≤ k ≤ n;

and LA is L0 , which is easily seen to be an I -lattice of dimensions d0, . . . , dn .

The minimal length of a v-sequence into which a finite set can be embedded
is most conveniently expressed in the mixed radix number system given by the
sequence [R : Il], l ≥ 0:

Every n ∈ N0 has a unique representation n =
∑∞

l=0 εl(n)[R : Il], where
0≤ εl(n) < [Il : Il+1]. Addition of numbers is performed by addition with carry on
the vectors of digits, where a carry from position l to position l + 1 occurs when
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the l-th digit reaches or exceeds [Il : Il+1]. We will call this the I -ary number
system and εl(n) the l-th digit in the I -ary representation of n.

If [Rv :Mv] is finite, then [Il :Il+1] divides [Mn
l :Mv

l+1] = [Rv :Mv]; if [Rv :Mv]
is infinite, however, the digits need not be uniformly bounded or even bounded
at all. If infinite indices [R : Il] occur, the system is somewhat degenerate, with
0 ≤ εN (n) < ∞ for the maximal N ∈ N0 with [R : IN ] finite and εl(n) = 0 for all
n, if l > N . (We use the convention that 0 · [R : Il] = 0 even if [R : Il] =∞.)

Recall that by Proposition 2.3 (a) every partial v-sequence can be completed
to a v-sequence of the same length. Therefore, `(A) is equal to the minimal ` such
that A can be arranged as a partial v-sequence of length `.

4.5 Lemma. Let L be an I -lattice of dimensions d0, . . . , dm , with [R : Im]
finite. For every partial v-sequence (ln)n∈N of minimal length formed by L, we

have N ={n∈N0 | εi(n)<di for all i }. Consequently, `(L)=
∑m

k=0(dk−1)[R :Ik].

Proof. Induction on m. For m=0, L consists of d0 elements mutually incongruent
modulo I1 . Any shortest partial v-sequence is just a listing of the elements of L,
in any order, as l0, . . . , ld0−1 , therefore N = {0, . . . , d0 − 1} and `(L) = d0 − 1.

Now let L be an I -lattice of dimensions d0, . . . , dm , m > 0. We can arrange
L as a partial v-sequence with index set N = {n ∈ N0 | ∀i εi(n) < di} as
follows: Choose a system of representatives L′ ⊆ L of the residue classes of Im

that L intersects. L′ is an I -lattice of dimensions d0, . . . , dm−1 . Arrange L′ as a
partial v-sequence (ln)n∈N ′ of minimal length and for each n ∈ N ′ assign indices
n + j[R : Im], j = 1, . . . , dm − 1 to the elements of L \ L′ in ln + Im . Since by
induction hypothesis N ′ is the set of all n =

∑m−1
j=0 kj [R : Ij ] with 0≤ kj < dj , N

is the set of all n =
∑m

j=0 kj [R : Ij ] with 0 ≤ kj < dj . The length of this partial
v-sequence is max(N ) =

∑m
k=0(dk − 1)[R : Ik].

Now, given any v-sequence of minimal length (ln)n∈N formed by L, we show
that it must be of this kind: From every residue class of Im that L intersects,
take the element of lowest index. These elements form a lattice L′ of dimensions
d0, . . . , dm−1 , arranged as a partial v-sequence with index set N ′⊆N . The indices
of the dm elements of L in each residue class of Im are part of an arithmetic
progression of period [R : Im] starting at n∈N ′ . If, for some n∈N ′ , the elements
of L in ln + Im do not have indices n + j[R : Im], j = 0, . . . , dm − 1, then some
index is at least n + dm[R : Im] ≥ dm[R : Im] >

∑m
k=0(dk − 1)[R : Ik], which is

more than the length of the sequence constructed earlier. Therefore, we must
have N = {n + j[I : Im] | n ∈ N ′, 0 ≤ j < dm}, the length of the sequence being
max(N ′) + (dm − 1)[R : Im]. This is minimal only if max(N ′) is minimal, i.e., if
L′ forms a partial v-sequence of minimal length. �

4.6 Theorem. Let A⊆R be a finite set whose elements are pairwise incongruent

mod In+1 , where [R : In] is finite, and d0, . . . , dn the dimensions of A. Then

`(A) =
∑n

j=0(dj − 1)[R : Ij ].

Proof. We know `(A) ≥ `(LA) =
∑n

j=0(dj − 1)[R : Ij ]. By Proposition 2.3 (a) it
suffices to arrange A as a partial v-sequence of length

∑n
j=0(dj − 1)[R : Ij ]. We
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define a chain of subsets of A that allows us to do this inductively. Let An = A

and for 0 < k ≤ n let Ak−1 ⊆ Ak be a system of representatives of those residue
classes of Ik that Ak intersects in the maximal number of elements. It is clear that
this maximal number is dk . A0 consists of d0 elements mutually incongruent mod
I1 . Listing A0 as a0, . . . , ad0−1 in any order makes A0 into a partial v-sequence of
length d0− 1. Assuming we have arranged Ak−1 as a partial v-sequence (an)n∈N
of length

∑k−1
j=0 (dj − 1)[R : Ij ], we will extend it to an arrangement of Ak as a

partial v-sequence of length
∑k

j=0(dj − 1)[R : Ij ].
Ak contains dk elements in an + Ik for each n ∈N , plus less than dk elements

each in some further residue classes of Ik . Let B ⊆ Ak be a system of repre-
sentatives of these further classes. By considering a completion of (an)n∈N to a
v-sequence of length [R : Ik] − 1 (which exists by Proposition 2.3) and assigning
each b ∈ B the index of the unique sequence element congruent to it mod Ik , we
get a partial v-sequence arrangement of Ak−1 ∪ B of length less than [R : Ik].
We assign consecutive indices in an arithmetic progression of period [R : Ik],
starting at the representative in Ak−1 ∪B , to the elements of Ak in each residue
class of Ik . The highest index in this partial v-sequence arrangement of Ak is
the highest index in a progression starting at a representative in Ak−1 , namely
max(N ) + (dk − 1)[R : Ik] =

∑k
j=0(dj − 1)[R : Ij ], since a progression starting at

b ∈ B with index n < [R : Ik] and containing the l < dk elements of (b + Ik) ∩Ak

only reaches index n + (l − 1)[R : Ik] < l[R : Ik] ≤ (dk − 1)[R : Ik]. �

5. The degree of the interpolating polynomial.

If n=
∑∞

l=0 εl(n)[R :Il] with 0≤ εl(n)< [Il :Il+1], we set rj(n)=
∑j−1

l=0 εl(n)[R :Il].
This is consistent with our earlier convention that rj(n) is the remainder of n under
integral division by [R : Ij ] if [R : Ij ] is finite, and rj(n) = n otherwise.

5.1 Proposition. Let (an) be a v-sequence for R (of length at least k) and fk

the binomial polynomial of degree k constructed from it. Then

(a) v(fk(an)) =
∣∣{l ≥ 1 | rl(k) > rl(n)}

∣∣,
(b) v(fk(an)) = 0 ⇐⇒ ∀ l εl(k) ≤ εl(n).

Proof. (a) is true for k>n, since then v(fk(an))=v(0)=∞ and there are infinitely
many l with rl(k) = k > n = rl(n). (The indices [R : Il] are unbounded because R

is infinite and
⋂

l≥0 Il = (0).) Now assume k ≤ n.
an≡ai mod Il for at most one i with k−rl(k)≤i<k−rl(k)+[R:Il], by definition

of weak v-sequence. Since (an) is really a v-sequence and n ≡ k − rl(k) + rl(n)
mod [R : Il], we know that an ≡ ak−rl(k)+rl(n) mod Il . The condition an ≡ ai mod
Il for some i with k − rl(k) ≤ i < k is therefore equivalent to rl(k) > rl(n), such
that (a) follows from Proposition 3.3 (a).

If rl(k) > rl(n) then ∃m ≤ l with εm(k) > εm(n) and if εm(k) > εm(n) then
rm(k) > rm(n). Therefore, ∀l rl(k) ≤ rl(n), which is equivalent to v(fk(an)) = 0
by (a), is equivalent to ∀ l εl(k) ≤ εl(n). Thus (b) follows from (a). �
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From Proposition 5.1 one can easily derive that v(fk(an)) equals the number of
carries that occur in the addition of k and n−k in the I -ary number system. For
an = n and v = vp this is Kummer’s result [11] that the exact power of p dividing
the binomial coefficient

(
n
k

)
equals the number of carries that occur in the addition

of k and n− k in base p arithmetic. Kummer’s expression of vp(
(
n
k

)
) in terms of

the digits of n, k and n−k in base p also generalizes, provided [In :In+1] = [R :I1]
for all n, cf. [8].

5.2 Lemma. For n ≥ 0, let In = Mn
v ∩ R. If [R : In] = ∞ and a, b ∈ R are

congruent mod In+m , m ≥ 0, then f(b) ≡ f(a) mod Im+1 for all f ∈ Int(R,Rv).

Proof. Extend a = a0 to an infinite v-sequence (ak)∞k=0 for R and construct
binomial polynomials fk ∈ Int(R,Rv) from it. Let f ∈ Int(R,Rv), then f =∑

k≥0 dkfk with dk ∈ Rv , since the fk are an Rv -basis of Int(R,Rv). Also,
d0 = f(a0) = f(a).

By Proposition 3.3, v(fk(b)) equals the number of j ≥ 1 such that for some l

with k−rj(k)≤ l <k, b≡al mod Ij . For k >0, every j with n≤ j≤n+m satisfies
this condition, because b≡ a0 mod Ij and rj(k) = k. We see that v(fk(b))≥m+1
for all k > 0. Therefore f(b) ≡ d0f0 = d0 = f(a) mod Im+1 . �

5.3 Corollary. Let α1, . . . , αn ∈ R. Only if the αi are pairwise incongruent

mod all In = Mn
v ∩R with [R : In] =∞ can there exist for all β1, . . . , βn ∈ Rv an

f ∈ Int(R,Rv) with f(αi) = βi .

5.4 Lemma. Let L be a finite I -lattice embedded in a v-sequence a0, . . . , al of

minimal length l=`(L), as L={an |n∈N}, and (fk)l
k=0 the binomial polynomials

constructed from a0, . . . , al . If n ∈ N and k /∈ N then v(fk(an)) > 0.

Proof. If k 6∈ N then εi(k) ≥ di > εi(n) for some i by Lemma 4.5; therefore
v(fk(an)) > 0 by Proposition 5.1. �

5.5 Remark. If A is a finite subset of R then d(A) is finite if and only if the
elements of A are pairwise incongruent mod all In = Mn

v ∩R with [R :In] =∞ and
`(A) is finite under precisely the same conditions: We know from Theorem 3.5
that d(A) ≤ `(A). Now if a, b ∈ A are congruent mod In with [R : In] = ∞ then
by Lemma 5.2 there does not exist f ∈ Int(R,Rv) with f(a) = 0 and f(b) = 1, so
d(A) = ∞. Conversely, if the elements of A are pairwise incongruent mod all In

of infinite index then `(A) is finite by Theorem 4.6.

5.6 Theorem. For every finite subset A of R, d(A) = `(A).

Proof. d(A) and `(A) are each finite if and only if A is a finite set that does not
contain two elements congruent mod any In = Mn

v ∩ R of infinite index. Let A

be such a set. In view of Theorem 3.5, we need only show d(A) ≥ `(A). Let
a0, . . . , al be a v-sequence containing A with l = `(A). By Lemma 4.5, this is
also the minimal length for a v-sequence containing the spanning lattice L of A,
therefore a0 ∈ L and al ∈ L (otherwise we could chop off the ends of the sequence

10
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and re-index starting with 0 to get a shorter v-sequence containing L). Let the
sequence (aj)l

j=0 be extended to an infinite v-sequence and let fj be the binomial
polynomial of degree j constructed from it.

Suppose f ∈ Int(R,Rv) with f(al) = 1 and f(ai) = 0 for all ai ∈ L with i < l;
we claim that deg f ≥ l. The fj form an Rv -basis of Int(R,Rv), so f =

∑
j≥0 djfj

with dj ∈Rv . We show for k≤ l that if ak ∈L then dk≡ δk,l mod I1 . Induction on
k: if k = 0 then d0 = f(a0) = δ0,l . For any k with ak ∈L, every j < k satisfies (by
Lemma 5.4) either aj ∈ L, in which case dj ≡ 0 mod I1 by induction hypothesis,
or fj(ak) ∈ I1 . Therefore f(ak) = dk +

∑k−1
j=0 djfj(ak) shows dk ≡ f(ak) = δk,l

mod I1 . In particular, we have shown dl 6= 0, which implies deg f ≥ l. �

We combine this with the formula for `(A) from Theorem 4.6 and the corollary
to Lemma 5.2. (The dimensions of a finite subset of R are defined in 4.4.)

5.7 Corollary. Let R be an infinite subring of a discrete valuation ring Rv ,

In = Mn
v ∩R and α1, . . . , αk (distinct) in R.

1. If and only if the αi are pairwise incongruent mod all In of infinite index in R

there exists for all β1, . . . , βk ∈ Rv an f ∈ Int(R,Rv) with f(αi) = βi .

2. In that case, the minimal d such that for all β1, . . . , βk ∈ Rv there exists an

f ∈ Int(R,Rv) with f(αi) = βi and deg f ≤ d, is d =
∑n

j=0(dj − 1)[R : Ij ],
where d0, . . . , dn are the dimensions of the set {α1, . . . , αk}.

6. Interpolation by integer-valued polynomials on Krull rings

We now turn to Krull rings and characterize those arguments r1, . . . , rn∈R that for
every choice of values s1, . . . , sn∈R admit an interpolating polynomial f ∈ Int(R).
We denote the set of prime ideals of height 1 in R by Spec1(R).

6.1 Lemma. Let v be a discrete valuation on a field K . Suppose f =
∑n

k=0 akxk

in K[x] splits over K as f(x) = an(x− b1) . . . (x− bm)(x− c1) . . . (x− cl), where

v(bi)< 0 and v(ci)≥ 0. Let µ=min0≤k≤n v(ak) and set f+(x)= (x−c1) . . . (x−cl)
then v

(
f(r)

)
= µ + v

(
f+(r)

)
for all r ∈ Rv .

Proof. If r ∈ Rv , v(r − bi) = v(bi) and v
(
f(r)

)
= v(an) +

∑m
i=1 v(bi) + v

(
f+(r)

)
.

We will show that
∑m

i=1 v(bi) = µ−v(an). Let a−1
n f(x) = xn +a′n−1x

n−1 + . . .+a′0
then µ− v(an) = min0≤k≤n v(a′k) and a′k is up to sign the elementary symmetric
polynomial of degree n− k in the bi and ci , so that min0≤k≤n v(a′k) = v(a′n−m) =
v
(
em(b1, . . . , bm, c1, . . . , cl)

)
=

∑m
i=1 v(bi). �

6.2 Lemma. Let R be a domain, r1, . . . , rn+1∈R and aj = rj−rn+1 (1≤ j≤n).
Then there exists f ∈ Int(R) with f(rj) = 0 (1 ≤ j ≤ n) and f(rn+1) = 1 if and

only if there exists g ∈ Int(R) with g(aj) = 0 (1 ≤ j ≤ n) and g(0) = 1.

Proof. (⇒) g(x): = f(x + rn+1) (⇐) f(x): = g(x− rn+1) �
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6.3 Theorem. Let R be a Krull ring and let r1, . . . , rn+1 (distinct) ∈ R such

that ri 6≡ rn+1 mod P (1 ≤ i ≤ n) for all P ∈ Spec1(R) with [R : P ] = ∞. Then

there exists f ∈ Int(R) with f(ri) = 0 (1 ≤ i ≤ n) and f(rn+1) = 1.

Proof. Let aj = rj − rn+1 for 1 ≤ j ≤ n. The aj are distinct non-zero elements
of R, none of which are contained in any P ∈ Spec1(R) with [R : P ] = ∞. By
Lemma 6.2, we want an f ∈ Int(R) with f(aj) = 0 for 1 ≤ j ≤ n and f(0) = 1.
We will first construct a polynomial g ∈ K[x] with g(aj) = 0 for 1 ≤ j ≤ n, such
that for every essential valuation v of R and every r ∈ R, v

(
g(r)

)
≥ v

(
g(0)

)
and

then set f(x) = g(x)/g(0).
Let P = {P ∈ Spec1(R) | ∃j aj ∈ P} then P is a finite set of maximal ideals

of finite index. Also let, for P ∈ P , mP = max{m ∈ N | ∃j aj ∈ Pm} and define
I =

⋂
P∈P PmP =

∏
P∈P PmP . Let N = [R : I]. Using the Chinese Remainder

Theorem mod PmP +1 for P ∈ P , we can get a system of representatives (bi)N
i=1

of R mod I with the property that for all i and all P ∈ P , bi 6∈ PmP +1 . Note
that for P ∈ P and k ≤ mP , the number of bi in any given residue class of P k is
N

/
[R : P k], since I is an ideal contained in P k . In other words,

∀r ∈ R ∀P ∈ P ∀k ≤mP

∣∣{i | vP (r − bi) ≥ k}
∣∣ =

N

[R : P k]
.

Let Q = {Q ∈ Spec1(R) \ P | ∃i bi ∈ Q} and for Q ∈ Q let lQ be the maximal
l ∈ N such that bi ∈ Ql for some i. Let c ∈ R with vQ(c) = lQ + 1 for all Q ∈ Q,
and vP (c) = 0 for all P ∈ P . Also, let Q′ = {Q ∈ Spec1(R) | vQ(c) > 0}, then
Q ⊆ Q′ and Q′ ∩ P = ∅.

We set b′i = c−1bi . Then vQ(b′i) < 0 for all Q ∈Q′ and 0≤ vP (b′i) < mP + 1 for
all P ∈P . If P ∈P and r ∈R, we have vP (r− b′i) = vP

(
c−1(cr− bi)

)
= vP (cr− bi).

Therefore, for all r ∈ R,

∀P ∈ P ∀k ≤mP

∣∣{i | vP (r − b′i) ≥ k}
∣∣ =

∣∣{i | vP (cr − bi) ≥ k}
∣∣ =

N

[R : P k]

and in particular
∣∣{i | vP (b′i) ≥ k}

∣∣ = N
/

[R : P k].
Let m be the maximal number of ai in any residue class of I in R and set

h(x) =
∏N

i=1(x − b′i)
m . To get a polynomial g with g(aj) = 0 for 1 ≤ j ≤ n, we

now replace certain roots of h with the elements a1, . . . , an . Since the bi are a
complete system of residues mod I in R, there exists for every j ∈ {1, . . . , n} an
ij with bij ≡ caj mod I .

Let g(x) =
∏mN

i=1 (x− ci) be the polynomial resulting from h by replacing, for
each j ∈ {1, . . . , n}, one copy of b′ij

in the multiset of roots of h by aj . (If ij = ik
for k 6= j this means caj ≡ cak mod I and therefore aj ≡ ak mod I , and by the
definition of m, b′ij

occurs with sufficient multiplicity as a root of h that every
ak ∈ aj + I can be exchanged for a different copy of b′ij

.) Note that for P ∈ P ,
0 ≤ vP (ci) < mP + 1 for all i.
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We claim that for all essential valuations v of R and all r∈R, v(g(r))≥v(g(0)).
First, assume P ∈ P . For all r ∈ R, if k ≤mP then

vP (r − b′ij
) ≥ k ⇐⇒ vP (r − aj) ≥ k (∗)

(and consequently
∣∣{i | vP (ci) ≥ k}

∣∣ = m
∣∣{i | vP (b′i) ≥ k}

∣∣). This is so because
vP (r − b′ij

) = vP

(
c−1(cr − bij )

)
= vP (cr − bij ) = vP (cr − caj + d) with d ∈ I ,

and then vP (d) ≥ mP ≥ k implies that vP (cr − caj + d) ≥ k if and only if
vP (r − aj) = vP (cr − caj) ≥ k. We abbreviate

∑mP

i=1
N

[R:P k]
by γP and get

vP

(
g(r)

)
=

mN∑
i=1

vP (r − ci) =
∑
k≥1

∣∣{i | vP (r − ci) ≥ k}
∣∣ ≥

≥
mP∑
k=1

∣∣{i | vP (r − ci) ≥ k}
∣∣ (∗)

= m

mP∑
k=1

∣∣{i | vP (r − b′i) ≥ k}
∣∣ = mγP ,

while vP (g(0)) =

=
∑
k≥1

∣∣{i | vP (ci) ≥ k}
∣∣ =

mP∑
k=1

∣∣{i | vP (ci) ≥ k}
∣∣ (∗)

= m

mP∑
k=1

∣∣{i | vP (b′i) ≥ k}
∣∣ = mγP .

Now consider Q∈Q′ . For all i, j , vQ(b′i) < 0 and vQ(aj) = 0. If g(x) =
∑mN

k=0 dkxk

and µ = min1≤k≤mN vQ(dk) then for all r ∈ R we have (using Lemma 6.1)

vQ

(
g(r)

)
= µ + vQ

( n∏
j=1

(r − aj)
)
≥ µ = µ + vQ

( n∏
j=1

aj

)
= vQ

(
g(0)

)
.

For the remaining essential valuations v of R, v(ci) = 0 for all i. Therefore, if
r ∈ R, v

(
g(r)

)
=

∑mN
i=1 v(r − ci) ≥ 0 =

∑mN
i=1 v(ci) = v

(
g(0)

)
.

Now let f(x) = g(x)/g(0). For j = 1, . . . , n, f(aj) = 0 because g(aj) = 0,
and clearly f(0) = 1. Also, f ∈ Int(R), because for all r ∈ R and every essential
valuation v of R, v

(
g(r)

)
≥ v

(
g(0)

)
and therefore v

(
f(r)

)
≥ 0. �

6.4 Remark. If P is a prime ideal in a domain R with [R : P ] = ∞ it is well
known that Int(R,RP ) = RP [x]. Every f ∈ Int(R,RP ) of degree n is determined
by its values at n + 1 arguments a0, . . . , an ∈ R and is therefore equal to the
Lagrange interpolation polynomial

ϕ(x) =
n∑

i=0

f(ai)

∏
j 6=i(x− aj)∏
j 6=i(ai − aj)

.

If the ai are chosen pairwise incongruent mod P , then ϕ(x) is clearly in RP [x].

6.5 Corollary. Let r1, . . . , rn be distinct elements of a Krull ring R. If and only

if the ri are pairwise incongruent mod all P ∈ Spec1(R) with [R : P ] = ∞ there

exists for all s1, . . . , sn ∈ R an f ∈ Int(R) with f(ri) = si for 1 ≤ i ≤ n.

Proof. The “if” part follows from the Theorem, since R-linear combinations of
polynomials in Int(R) are again in Int(R). Conversely, if a, a′ ∈ R are congruent
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mod P ∈ Spec1(R) with [R :P ] =∞ then there is no f ∈ Int(R,RP ) with f(a) = 0
and f(a′) = 1, since f(a) ≡ f(a′) mod P for all f ∈ Int(R,RP ) ⊇ Int(R), by
Lemma 5.2 (or by the fact that Int(R,RP ) = RP [x], see 6.4). �
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