INTERPOLATION

by

INTEGER-VALUED POLYNOMIALS

Sophie Frisch

ABSTRACT. Let R be a Krull ring with quotient field K and a_1, \ldots, a_n in R. If and only if the a_i are pairwise incongruent mod every height 1 prime ideal of infinite index in R does there exist for all values b_1, \ldots, b_n in R an interpolating integer-valued polynomial, i.e., an $f \in K[x]$ with $f(a_i) = b_i$ and $f(R) \subseteq R$. If Sis an infinite subring of a discrete valuation ring R_v with quotient field K and a_1, \ldots, a_n in S are pairwise incongruent mod all $M_v^k \cap S$ of infinite index in S, we derive a formula (depending on the distribution of the a_i among residue classes of the ideals $M_v^k \cap S$) for the minimal d, such that for all $b_1, \ldots, b_n \in R_v$ there exists a polynomial $f \in K[x]$ of degree at most d with $f(a_i) = b_i$ and $f(S) \subseteq R_v$.

1. Introduction.

Suppose D is an integral domain with quotient field K. Unless D is a field, it is not always possible, given a_0, \ldots, a_n (distinct) and b_1, \ldots, b_n in D, to find a polynomial $f \in D[x]$ with $f(a_i) = b_i$. This is so because the function induced on Dby a polynomial with coefficients in D must preserve congruences mod every ideal of D. One might say that the next best thing to interpolation with polynomials in D[x] is interpolation with polynomials in K[x] that map every element of Dinto D and thus induce a function on D.

We will show that this kind of interpolation is possible for arbitrary arguments and values in D whenever D is a Dedekind ring all of whose residue fields are finite, such as the ring of algebraic integers in a number field. (For $D = \mathbb{Z}$ this is easy to see, and for $D = \mathbb{F}_q[x]$ it has been shown by Carlitz [5].)

More generally, we find that distinct elements a_0, \ldots, a_n of a Krull ring R have the property that for all b_0, \ldots, b_n in R there exists a polynomial $f \in K[x]$ with $f(a_i) = b_i$ and $f(R) \subseteq R$ if and only if the a_i are pairwise incongruent mod every height 1 prime ideal P of R with $[R:P] = \infty$.

We use the customary notation $\operatorname{Int}(E, D) = \{f \in K[x] \mid f(E) \subseteq D\}$ and $\operatorname{Int}(D) = \operatorname{Int}(D, D)$, where D is a domain with quotient field K and E a subset of K. A polynomial $f \in K[x]$ that maps E into D is called "integer-valued" on E,

¹⁹⁹¹ Math. Subj. Classification: Primary 13B25, 11S05, 13G05; Secondary 11B65, 05A10.

following Pólya [15] and Ostrowski [14], who studied Int(D) where D is the ring of algebraic integers in a number field. More recently, integer-valued polynomials have been investigated by Cahen [2,3], Chabert [6], McQuillan [12,13], Gilmer, Heinzer and Lantz [9], and others. For a survey of the subject, see the monograph by Cahen and Chabert [4].

To interpolate at arguments a_0, \ldots, a_n , we use linear combinations of the polynomials $f_k(x) = \prod_{i=0}^{k-1} (x - a_i) / \prod_{i=0}^{k-1} (a_k - a_i)$, $0 \le k \le n$. For this purpose we introduce, when R is an infinite subring of a discrete valuation ring R_v , special sequences $(a_k) \subseteq R$ that ensure that the polynomials f_k constructed from them are in $\operatorname{Int}(R, R_v)$ and then show how to embed a finite subset of R in a sequence of this kind.

This approach seems justified by the result that the minimal length of such a sequence containing $\alpha_0, \ldots, \alpha_m \in R$ is equal to the minimal d such that for all $\beta_0, \ldots, \beta_m \in R_v$ there exists an $f \in \text{Int}(R, R_v)$ with $f(\alpha_i) = \beta_i$ and deg $f \leq d$. It also yields a formula for this minimal d, depending on the distribution of the α_i among the residue classes of $R \cap M_v^k$ in R.

2. Sequences.

In this section, R may be any commutative ring with identity. We denote the set of non-negative integers $\{0, 1, 2, ...\}$ by \mathbb{N}_0 . The kind of sequences below has already been used in [7]; we need to develop some more of their properties.

2.1 Definition. For a set \mathcal{I} of ideals in a commutative ring with identity R, we define a *partial* \mathcal{I} -sequence to be an indexed set $(a_n)_{n \in \mathcal{N}}$, with $\mathcal{N} \subseteq \mathbb{N}_0$, of elements in R, such that for all $I \in \mathcal{I}$ and all $n, m \in \mathcal{N}$

$$a_n \equiv a_m \mod I \iff [R:I] \mid n-m.$$

(If [R:I] is infinite, we regard it as dividing 0, but no other integer.) A partial \mathcal{I} -sequence is called an \mathcal{I} -sequence if \mathcal{N} is an initial segment of \mathbb{N}_0 .

2.2 Convention. The *length* of a finite partial sequence $(a_n)_{n \in \mathcal{N}}$ is $\max(\mathcal{N})$.

2.3 Proposition. For every descending chain $\mathcal{I} = \{I_n \mid n \in \mathbb{N}\}$ of ideals in R

- (a) every finite partial \mathcal{I} -sequence can be completed to an \mathcal{I} -sequence,
- (b) every finite \mathcal{I} -sequence can be extended to an infinite \mathcal{I} -sequence,
- (c) every finite set $A \subseteq R$ of elements pairwise incongruent mod I_{n+1} , where $[R:I_n]$ is finite, can be embedded in a finite \mathcal{I} -sequence, and one of length less than $[R:I_{n+1}]$, if $[R:I_{n+1}]$ is also finite.

Proof. Given $(a_n)_{n \in \mathcal{N}}$, and $l \geq \max(\mathcal{N})$, we show how to complete (a_n) to an \mathcal{I} -sequence of length l. General principle: For a finite sequence of length l to be an \mathcal{I} -sequence (\mathcal{I} being a descending chain of ideals), it suffices that it satisfy the

requirements with respect to I_1, \ldots, I_k , if k satisfies $[R:I_k] > l$ or for all $m \ge k$, $I_m = I_k$.

Case 1: there exists I_k of finite index with $[R:I_k] > l$ or $I_m = I_k$ for $m \ge k$. For $j = 1, \ldots, k$ inductively, we assign a different residue class of I_j in R to every residue class mod $[R:I_j]$ in \mathbb{Z} such that 1) for all $n \in \mathcal{N}$, $n + [R:I_j]\mathbb{Z}$ is assigned $a_n + I_j$ (this is consistent because $(a_n)_{n \in \mathcal{N}}$ is a partial \mathcal{I} -sequence) and 2) if $r + I_{j-1}$ was assigned to $m + [R:I_{j-1}]\mathbb{Z}$, then the residue classes of I_j in $r + I_{j-1}$ are assigned to the residue classes of $[R:I_j]\mathbb{Z}$ in $m + [R:I_{j-1}]\mathbb{Z}$.

Case 2: there is I_{k-1} with $[R:I_{k-1}] < l$ and $[R:I_k] = \infty$. We proceed as above for $j = 0, \ldots, k-1$ and then assign a different residue class of I_k to every $n \leq l, n \in \mathbb{N}_0$, such that 1) every $n \in \mathcal{N}$ is assigned $a_n + I_k$ and 2) if $r + I_{k-1}$ was assigned to $m + [R:I_{k-1}]\mathbb{Z}$, every $n \in m + [R:I_{k-1}]\mathbb{Z}$ is assigned a residue class of I_k in $r + I_{k-1}$.

We now define sequence elements for indices $m \notin \mathcal{N}$, $0 \leq m \leq l$, by choosing a_m from the residue class of I_k assigned to $m + [R:I_k]\mathbb{Z}$ (in case 1) or to m (in case 2). The resulting sequence $(a_n)_{n=0}^l$ satisfies the \mathcal{I} -sequence requirements with respect to $I_1, \ldots I_k$, which is all we need by the general principle stated above. We can extend $(a_n)_{n=0}^l$ to an \mathcal{I} -sequence of length l' > l, and inductively to an infinite \mathcal{I} -sequence by iterating the construction. This shows (a) and (b). It also shows that \mathcal{I} -sequences of arbitrary length exist, since we can start with any $a_0 \in R$ and extend it to an infinite \mathcal{I} -sequence.

For (c), if $[R:I_{n+1}]$ is finite, we take an \mathcal{I} -sequence of length $[R:I_{n+1}] - 1$ and swap every member of A with the unique sequence element congruent to it mod I_{n+1} . Otherwise, we take an \mathcal{I} -sequence of length $c \cdot [R:I_n] - 1$, c being the maximal number of elements of A in any residue class of I_n , and swap every $a \in A$ with a sequence element in $a + I_n$, choosing the one in $a + I_{n+1}$, if such exists. \Box

2.4 Definition. For a set \mathcal{I} of ideals in a commutative ring with identity R, we define a *weak* \mathcal{I} -sequence to be a sequence $(a_n)_{n \in \mathcal{N}}$, where \mathcal{N} is an initial segment of \mathbb{N}_0 , such that for all $I \in \mathcal{I}$ and all $k \geq 0$ the sequence elements a_i with $k[R:I] \leq i < (k+1)[R:I]$ are pairwise incongruent mod I. (For infinite [R:I], we use the convention 0[R:I] = 0.)

We could also define partial weak \mathcal{I} -sequences and show an analogue of Proposition 2.3, but we will not need this. To compare \mathcal{I} -sequences and weak \mathcal{I} -sequences, we note that

- 1) An infinite sequence is an \mathcal{I} -sequence if and only if for every $I \in \mathcal{I}$ of finite index, every [R:I] consecutive terms of the sequence form a complete system of residues mod I and the terms of the sequence are pairwise incongruent mod every $I \in \mathcal{I}$ of infinite index.
- 2) An infinite sequence is a weak \mathcal{I} -sequence if and only if for every $I \in \mathcal{I}$ of finite index, every [R:I] consecutive terms of the sequence starting at an index divisible by [R:I] form a complete system of residues mod I and the terms of the sequence are pairwise incongruent mod every $I \in \mathcal{I}$ of infinite index.

2.5 Example. In the ring of integers \mathbb{Z} , for every fixed $k \in \mathbb{Z}$, the sequence $a_n = k + n$ for $n \ge 0$ is an \mathcal{I} -sequence for the set of all ideals of \mathbb{Z} .

2.6 Example. If \mathbb{F}_q is the finite field of order q then a weak \mathcal{I} -sequence for the set of all ideals of $\mathbb{F}_q[x]$ that runs through $\mathbb{F}_q[x]$ bijectively can be constructed as follows (Wagner [16], see also Amice [1]): Let $\mathbb{F}_q = \{r_0, \ldots, r_{q-1}\}$, where $r_0 = 0$. If $n = \sum_{i=0}^{N} c_i q^i$ with $0 \le c_i < q$, set $a_n = \sum_{i=0}^{N} r_{c_i} x^i$. This is a weak \mathcal{I} -sequence, since a_0, \ldots, a_{q^m-1} are precisely the elements of $\mathbb{F}_q[x]$ of degree less than m and thus form a system of residues mod every ideal generated by an element of degree m, and the q^m sequence elements starting at index kq^m (with $0 \le k < q$) are just the first q^m elements shifted by $r_k x^m$: $a_{kq^m} = r_k x^m + a_0, \ldots, a_{(k+1)q^m-1} = r_k x^m + a_{q^m-1}$.

2.7 Example. An infinite \mathcal{I} -sequence exists for every descending chain \mathcal{I} of ideals in a ring R. (Apply Proposition 2.3 (b) to $a_0 = 0$.) If R is a countably infinite ring and \mathcal{I} a descending chain of ideals of finite index in R with $\bigcap_{n \in \mathbb{N}} I_n = (0)$ then there exists an \mathcal{I} -sequence that runs through R bijectively [8].

3. Binomial Polynomials.

Let R_v be a discrete valuation ring (with value group \mathbb{Z} and $v(0) = \infty$), M_v its maximal ideal, K its quotient field and R an infinite subring of R_v . (Throughout this paper, discrete valuation always means discrete rank one valuation.) We will define some useful polynomials in $\operatorname{Int}(R, R_v)$, which are modeled after the polynomials

$$\binom{x}{n} = \frac{x(x-1)\dots(x-n+1)}{n!}$$

in $\operatorname{Int}(\mathbb{Z})$ and which we therefore call "binomial polynomials". These polynomials were introduced in [7], generalizing a construction of Pólya [15] that has also been employed by Cahen [3], Gunji and McQuillan [10,12] and others. The sequence a_i of elements of R that will replace the sequence of natural numbers in the definition of the binomial polynomials will have to be nicely distributed with respect to the residue classes of $R \cap M_v^n$ in R, in the following sense:

3.1 Definition. A [partial] v-sequence for R is a [partial] \mathcal{I} -sequence with $\mathcal{I} = \{M_v^n \cap R \mid n \in \mathbb{N}\}$. In other words, $(a_n)_{n \in \mathcal{N}} \subseteq R$ is a partial v-sequence for R if and only if for all $n \in \mathbb{N}$ and all $i, j \in \mathcal{N}$,

$$v(a_i - a_j) \ge n \quad \iff \quad [R: M_v^n \cap R] \mid i - j.$$

Similarly, a weak v-sequence for R is defined to be a weak \mathcal{I} -sequence with $\mathcal{I} = \{M_v^n \cap R \mid n \in \mathbb{N}\}$. In other words, $(a_n)_{n \geq 0}$ is a weak v-sequence for R if and only if for all $n \in \mathbb{N}$ and all i, j and $k \in \mathbb{N}_0$,

$$k\left[R: M_v{}^n \cap R\right] \leq i < j < (k+1)\left[R: M_v{}^n \cap R\right] \quad \Longrightarrow \quad v(a_i - a_j) < n$$

(If $[R: M_v \cap R]$ is infinite, the elements of a [partial, weak] v-sequence for R must be pairwise incongruent mod $M_v \cap R$.)

For brevity, we write I_n for $M_v{}^n \cap R$ from this point on.

Note that by the Krull Intersection Theorem, $\bigcap_{k=0}^{\infty} I_k = (0)$. Therefore, there exists for every finite subset A of R an $n \in \mathbb{N}$ such that distinct elements of A are incongruent mod I_n . Since R is infinite, the indices $[R:I_k]$ grow arbitrarily large or are infinite from some k on.

3.2 Definition. The binomial polynomials constructed from a weak v-sequence (a_n) are

$$f_0 = 1$$
 and $f_n(x) = \frac{\prod_{i=0}^{n-1} (x - a_i)}{\prod_{i=0}^{n-1} (a_n - a_i)}$ for $n > 0$.

3.3 Proposition. Let $(a_i)_{i=0}^m$ be a weak *v*-sequence for *R* and $(f_i)_{i=0}^m$ the binomial polynomials constructed from it. For $j, k \in \mathbb{N}_0$ let $r_j(k)$ be the remainder of *k* under integral division by $[R:I_j]$, if $[R:I_j]$ is finite, and $r_j(k) = k$ otherwise. Then for all $r \in R$ and $0 \le k \le m$

(a) $v(f_k(r)) = |\{j \ge 1 \mid r \equiv a_l \mod I_j \text{ for some } l \text{ with } k - r_j(k) \le l < k\}|,$

(b) in particular, $f_k \in \text{Int}(R, R_v)$.

Proof. Let $g_k(x) = \prod_{i=0}^{k-1} (x - a_i)$, then $v(f_k(r)) = v(g_k(r)) - v(g_k(a_k))$. For any $s \in R$, $v(g_k(s)) = \sum_{j \ge 1} \left| \{i \mid 0 \le i < k, s \equiv a_i \mod I_j\} \right|$. Let $q_j(r) = \left[\frac{k}{[R:I_j]}\right]$, then $k = q_j(k)[R:I_j] + r_j(k)$, and the sequence a_0, \ldots, a_{k-1} consists of $q_j(r)$ complete systems of residues mod I_j comprising $a_0, \ldots, a_{k-r_j(k)-1}$ and $r_j(k)$ extra terms a_l for $k - r_j(k) \le l < k$, pairwise incongruent mod I_j .

Now $|\{i \mid 0 \le i < k, s \equiv a_i \mod I_j\}|$ is either $q_j(k)$ or $q_j(k) + 1$, the latter being the case if and only if s is congruent mod I_j to one of the elements a_l with $k - r_j(k) \le l < k$. This extra +1 never occurs with $s = a_k$, since a_k is not congruent to any a_l with $k - r_j(k) \le l < k$ by definition of weak v-sequence. \Box

3.4 Remark. It is easy to see that the binomial polynomials f_k constructed from a weak *v*-sequence (a_i) for R, where R is an infinite subring of a discrete valuation ring R_v , give a basis of the free R_v -module $\operatorname{Int}(R, R_v)$, cf. [7]. Indeed, deg $f_k = k$ shows that the f_k are a K-basis of K[x]. Since they are in $\operatorname{Int}(R, R_v)$, they form a basis of a free R_v -module $F \subseteq \operatorname{Int}(R, R_v)$. To see $\operatorname{Int}(R, R_v) \subseteq F$, consider $f = \sum d_k f_k$ with $d_k \in K$. A simple induction shows that for $f \in \operatorname{Int}(R, R_v)$ the d_k are actually in R_v : $d_0 = f(a_0)$, and $d_k = f(a_k) - \sum_{i=0}^{k-1} d_i f_i(a_k)$ (by the facts that $f_k(a_k) = 1$ and $f_j(a_k) = 0$ for j > k). The last argument also shows that for a polynomial $f \in K[x]$ with deg f < m to be in $\operatorname{Int}(R, R_v)$ it suffices that $f(a_i) \in R_v$ for $0 \le i < m$.

If a domain S with quotient field K is the intersection of a family of discrete valuation rings in K, $S = \bigcap_{v \in \mathcal{V}} R_v$, then for every subring R of S we have

 $\operatorname{Int}(R, S) = \bigcap_{v \in \mathcal{V}} \operatorname{Int}(R, R_v)$. In particular this holds if S is a Krull ring and \mathcal{V} the set of its essential valuations.

3.5 Theorem. Let R be an infinite subring of a Krull ring S. If $a_0, \ldots, a_n \in R$ is a weak v-sequence for R for all essential valuations v of S simultaneously then for all $b_0, \ldots, b_n \in S$ there exists $f \in \text{Int}(R, S)$ with $f(a_i) = b_i$ $(0 \le i \le n)$ and $\deg f \le n$.

Proof. Let $(f_i)_{i=0}^n$ be the binomial polynomials constructed from $(a_i)_{i=0}^n$. For every essential valuation v of S, we know from Proposition 3.3 (b) that the f_i , and therefore R_v -linear combinations of them, are in $\operatorname{Int}(R, R_v)$. Therefore S-linear combinations of the f_i are in $\bigcap_v \operatorname{Int}(R, R_v) = \operatorname{Int}(R, S)$. We define coefficients $d_k \in S$ inductively, such that $f = \sum_{k=0}^n d_k f_k$ maps a_i to b_i for $0 \leq i \leq n$: let $d_0 = b_0$, and $d_m = b_m - \sum_{k=0}^{m-1} d_k f_k(a_m)$. Since $f_k(a_k) = 1$ and $f_m(a_k) = 0$ for m > k, we get $f(a_m) = d_m + \sum_{k=0}^{m-1} d_k f_k(a_m) = b_m$ as required. \Box

3.6 Corollary. (Carlitz [5]) Let $\alpha_1, \ldots, \alpha_k$ be distinct elements of $\mathbb{F}_q[x]$ and $d = \max_{1 \le i \le k} \deg_x \alpha_i$. Then for all $\beta_1, \ldots, \beta_k \in \mathbb{F}_q[x]$ there exists $f(t) \in \operatorname{Int}(\mathbb{F}_q[x])$ with $\deg_t f < q^d$ and $f(\alpha_i) = \beta_i$ for $i = 1, \ldots, k$.

Proof. Wagner's sequence (Example 2.6) is a weak \mathcal{I} -sequence for the set of all ideals of $\mathbb{F}_q[x]$ and therefore a fortiori a weak v-sequence for all essential valuations of $\mathbb{F}_q[x]$. Its initial segment a_0, \ldots, a_{q^d-1} consists of all elements of $\mathbb{F}_q[x]$ of degree at most d, with $\alpha_1, \ldots, \alpha_k$ among them. \Box

Carlitz proved this by showing that a polynomial $f \in \mathbb{F}_q(x)[t]$ with $\deg_t(f) < q^m$ is in $\operatorname{Int}(\mathbb{F}_q[x])$ if and only if it maps all $\alpha \in \mathbb{F}_q[x]$ with $\deg_x(\alpha) < m$ to values in $\mathbb{F}_q[x]$ ([5] Theorem 7.1). Since there are q^m elements of degree less than m in $\mathbb{F}_q[x]$, the Lagrange interpolation polynomial for these arguments will be of degree $q^m - 1$ or less and will therefore be in $\operatorname{Int}(\mathbb{F}_q[x])$ provided the values prescribed for the q^m arguments are in $\mathbb{F}_q[x]$. To relate Carlitz's proof to the one using Wagner's sequence, note that a polynomial $f \in K[x]$ with $\deg f < m$ that takes values $f(a_i) \in \mathbb{R}_v$ on a v-sequence a_0, \ldots, a_{m-1} for R is (by the argument in 3.4) an \mathbb{R}_v -linear combination of the binomial polynomials f_0, \ldots, f_{m-1} constructed from the v-sequence and therefore in $\operatorname{Int}(\mathbb{R}, \mathbb{R}_v)$.

Unfortunately, weak v-sequences for all essential valuations of a Krull ring simultaneously seem to be rare, and we will use a different approach to interpolation with integer-valued polynomials on Krull rings in section 6.

Locally, however, we can use v-sequences to construct interpolating integervalued polynomials as follows: Let $\alpha_1, \ldots, \alpha_k$ be elements of an infinite subring R of a discrete valuation ring R_v that are pairwise incongruent mod all $M_v^n \cap R$ of infinite index in R. By Proposition 2.3, $\alpha_1, \ldots, \alpha_k$ can be embedded in a v-sequence a_0, \ldots, a_ℓ . Therefore there exists for arbitrary values $\beta_1, \ldots, \beta_k \in R_v$ an $f \in \text{Int}(R, R_v)$ with deg $f \leq \ell$ that maps α_i to β_i , by Theorem 3.5.

In section 5 we will see that the minimal length ℓ of a v-sequence for R containing $\alpha_1, \ldots, \alpha_k$ coincides with the minimal d such that for arbitrary values

 β_1, \ldots, β_k in R_v there exists an $f \in \text{Int}(R, R_v)$ with deg $f \leq d$ that maps α_i to β_i ; so that, in a sense, interpolation by polynomials in $\text{Int}(R, R_v)$ using v-sequences yields interpolation polynomials of best possible degree.

4. Embedding sets in v-sequences of minimal length.

As before, R is an infinite subring of a discrete valuation ring R_v , $I_n = M_v^n \cap R$ and $\mathcal{I} = \{I_n \mid n \ge 0\}$. Recall that the length of a sequence $(a_i)_{i=0}^n$ is n, by convention.

4.1 Definition. Let A be a finite subset of R.

- 1. We define d(A) to be the minimal $d \in \mathbb{N}_0$ such that for every choice of values $r_a \in R_v$ for $a \in A$ there exists $f \in \operatorname{Int}(R, R_v)$ with $f(a) = r_a$ for all $a \in A$ and $\deg f \leq d$, if such a d exists; otherwise $d(A) = \infty$.
- 2. If A is not embeddable in any v-sequence in R then $\ell(A) = \infty$; otherwise we define $\ell(A)$ to be the minimal ℓ such that there exists a v-sequence a_0, \ldots, a_ℓ in R containing A.

4.2 Corollary to Theorem 3.5. For every finite subset A of R, $d(A) \leq \ell(A)$.

We will show that $d(A) = \ell(A)$ in section 5; but before, we want to derive a formula for $\ell(A)$. In order to do this, we first consider sets that have a simple structure with respect to the chain of ideals $I_n = M_v^n \cap R$, $n \ge 0$.

4.3 Definition. We call a non-empty set $L \subseteq R$ an \mathcal{I} -lattice of dimensions $(d_k)_{k\geq 0}$ if, for all $k\geq 0$, L intersects exactly d_k residue classes of I_{k+1} in every residue class of I_k that it intersects. If L is finite, then $d_k = 1$ for all but finitely many k, and we speak of dimensions d_0, \ldots, d_n , meaning $d_k = 1$ for k > n.

4.4 Definition. To every finite set $A \subseteq R$ whose elements are pairwise incongruent mod I_{n+1} , where $[R:I_n]$ is finite, we associate dimensions $(d_k)_{k\geq 0}$ and an \mathcal{I} -lattice $L_A \subseteq A$, the spanning lattice of A, inductively as follows:

- $L_n = A$ and $d_k = 1$ for k > n,
- d_k is the maximal number of residue classes of I_{k+1} that L_k intersects in any residue class of I_k , for $0 \le k \le n$;
- L_{k-1} consists of the elements of L_k in those residue classes of I_k that L_k intersects in d_k residue classes of I_{k+1} , for $1 \le k \le n$;

and L_A is L_0 , which is easily seen to be an \mathcal{I} -lattice of dimensions d_0, \ldots, d_n .

The minimal length of a v-sequence into which a finite set can be embedded is most conveniently expressed in the mixed radix number system given by the sequence $[R: I_l], l \ge 0$:

Every $n \in \mathbb{N}_0$ has a unique representation $n = \sum_{l=0}^{\infty} \varepsilon_l(n) [R : I_l]$, where $0 \leq \varepsilon_l(n) < [I_l : I_{l+1}]$. Addition of numbers is performed by addition with carry on the vectors of digits, where a carry from position l to position l+1 occurs when

the *l*-th digit reaches or exceeds $[I_l: I_{l+1}]$. We will call this the \mathcal{I} -ary number system and $\varepsilon_l(n)$ the *l*-th digit in the \mathcal{I} -ary representation of n.

If $[R_v: M_v]$ is finite, then $[I_l: I_{l+1}]$ divides $[M_n^{l}: M_v^{l+1}] = [R_v: M_v]$; if $[R_v: M_v]$ is infinite, however, the digits need not be uniformly bounded or even bounded at all. If infinite indices $[R: I_l]$ occur, the system is somewhat degenerate, with $0 \le \varepsilon_N(n) < \infty$ for the maximal $N \in \mathbb{N}_0$ with $[R: I_N]$ finite and $\varepsilon_l(n) = 0$ for all n, if l > N. (We use the convention that $0 \cdot [R: I_l] = 0$ even if $[R: I_l] = \infty$.)

Recall that by Proposition 2.3 (a) every partial v-sequence can be completed to a v-sequence of the same length. Therefore, $\ell(A)$ is equal to the minimal ℓ such that A can be arranged as a partial v-sequence of length ℓ .

4.5 Lemma. Let *L* be an \mathcal{I} -lattice of dimensions d_0, \ldots, d_m , with $[R:I_m]$ finite. For every partial *v*-sequence $(l_n)_{n \in \mathcal{N}}$ of minimal length formed by *L*, we have $\mathcal{N} = \{n \in \mathbb{N}_0 \mid \varepsilon_i(n) < d_i \text{ for all } i\}$. Consequently, $\ell(L) = \sum_{k=0}^m (d_k - 1)[R:I_k]$.

Proof. Induction on m. For m = 0, L consists of d_0 elements mutually incongruent modulo I_1 . Any shortest partial v-sequence is just a listing of the elements of L, in any order, as l_0, \ldots, l_{d_0-1} , therefore $\mathcal{N} = \{0, \ldots, d_0 - 1\}$ and $\ell(L) = d_0 - 1$.

Now let L be an \mathcal{I} -lattice of dimensions $d_0, \ldots, d_m, m > 0$. We can arrange L as a partial v-sequence with index set $\mathcal{N} = \{n \in \mathbb{N}_0 \mid \forall i \quad \varepsilon_i(n) < d_i\}$ as follows: Choose a system of representatives $L' \subseteq L$ of the residue classes of I_m that L intersects. L' is an \mathcal{I} -lattice of dimensions d_0, \ldots, d_{m-1} . Arrange L' as a partial v-sequence $(l_n)_{n \in \mathcal{N}'}$ of minimal length and for each $n \in \mathcal{N}'$ assign indices $n + j[R:I_m], j = 1, \ldots, d_m - 1$ to the elements of $L \setminus L'$ in $l_n + I_m$. Since by induction hypothesis \mathcal{N}' is the set of all $n = \sum_{j=0}^{m-1} k_j[R:I_j]$ with $0 \leq k_j < d_j$, \mathcal{N} is the set of all $n = \sum_{j=0}^m k_j[R:I_j]$ with $0 \leq k_j < d_j$. The length of this partial v-sequence is $\max(\mathcal{N}) = \sum_{k=0}^m (d_k - 1)[R:I_k]$.

Now, given any v-sequence of minimal length $(l_n)_{n \in \mathcal{N}}$ formed by L, we show that it must be of this kind: From every residue class of I_m that L intersects, take the element of lowest index. These elements form a lattice L' of dimensions d_0, \ldots, d_{m-1} , arranged as a partial v-sequence with index set $\mathcal{N}' \subseteq \mathcal{N}$. The indices of the d_m elements of L in each residue class of I_m are part of an arithmetic progression of period $[R:I_m]$ starting at $n \in \mathcal{N}'$. If, for some $n \in \mathcal{N}'$, the elements of L in $l_n + I_m$ do not have indices $n + j[R:I_m]$, $j = 0, \ldots, d_m - 1$, then some index is at least $n + d_m[R:I_m] \ge d_m[R:I_m] > \sum_{k=0}^m (d_k - 1)[R:I_k]$, which is more than the length of the sequence constructed earlier. Therefore, we must have $\mathcal{N} = \{n + j[I:I_m] \mid n \in \mathcal{N}', 0 \le j < d_m\}$, the length of the sequence being $\max(\mathcal{N}') + (d_m - 1)[R:I_m]$. This is minimal only if $\max(\mathcal{N}')$ is minimal, i.e., if L' forms a partial v-sequence of minimal length. \Box

4.6 Theorem. Let $A \subseteq R$ be a finite set whose elements are pairwise incongruent mod I_{n+1} , where $[R:I_n]$ is finite, and d_0, \ldots, d_n the dimensions of A. Then $\ell(A) = \sum_{j=0}^n (d_j - 1)[R:I_j].$

Proof. We know $\ell(A) \ge \ell(L_A) = \sum_{j=0}^n (d_j - 1)[R:I_j]$. By Proposition 2.3 (a) it suffices to arrange A as a partial v-sequence of length $\sum_{j=0}^n (d_j - 1)[R:I_j]$. We

define a chain of subsets of A that allows us to do this inductively. Let $A_n = A$ and for $0 < k \le n$ let $A_{k-1} \subseteq A_k$ be a system of representatives of those residue classes of I_k that A_k intersects in the maximal number of elements. It is clear that this maximal number is d_k . A_0 consists of d_0 elements mutually incongruent mod I_1 . Listing A_0 as a_0, \ldots, a_{d_0-1} in any order makes A_0 into a partial v-sequence of length $d_0 - 1$. Assuming we have arranged A_{k-1} as a partial v-sequence $(a_n)_{n \in \mathcal{N}}$ of length $\sum_{j=0}^{k-1} (d_j - 1)[R:I_j]$, we will extend it to an arrangement of A_k as a partial v-sequence of length $\sum_{j=0}^{k} (d_j - 1)[R:I_j]$.

 A_k contains d_k elements in $a_n + I_k$ for each $n \in \mathcal{N}$, plus less than d_k elements each in some further residue classes of I_k . Let $B \subseteq A_k$ be a system of representatives of these further classes. By considering a completion of $(a_n)_{n \in \mathcal{N}}$ to a v-sequence of length $[R:I_k] - 1$ (which exists by Proposition 2.3) and assigning each $b \in B$ the index of the unique sequence element congruent to it mod I_k , we get a partial v-sequence arrangement of $A_{k-1} \cup B$ of length less than $[R:I_k]$. We assign consecutive indices in an arithmetic progression of period $[R:I_k]$, starting at the representative in $A_{k-1} \cup B$, to the elements of A_k in each residue class of I_k . The highest index in this partial v-sequence arrangement of A_k is the highest index in a progression starting at a representative in A_{k-1} , namely $\max(\mathcal{N}) + (d_k - 1)[R:I_k] = \sum_{j=0}^k (d_j - 1)[R:I_j]$, since a progression starting at $b \in B$ with index $n < [R:I_k]$ and containing the $l < d_k$ elements of $(b + I_k) \cap A_k$ only reaches index $n + (l-1)[R:I_k] < l[R:I_k] \leq (d_k - 1)[R:I_k]$. \Box

5. The degree of the interpolating polynomial.

If $n = \sum_{l=0}^{\infty} \varepsilon_l(n)[R:I_l]$ with $0 \le \varepsilon_l(n) < [I_l:I_{l+1}]$, we set $r_j(n) = \sum_{l=0}^{j-1} \varepsilon_l(n)[R:I_l]$. This is consistent with our earlier convention that $r_j(n)$ is the remainder of n under integral division by $[R:I_j]$ if $[R:I_j]$ is finite, and $r_j(n) = n$ otherwise.

5.1 Proposition. Let (a_n) be a v-sequence for R (of length at least k) and f_k the binomial polynomial of degree k constructed from it. Then

- (a) $v(f_k(a_n)) = |\{l \ge 1 \mid r_l(k) > r_l(n)\}|,$
- (b) $v(f_k(a_n)) = 0 \iff \forall l \ \varepsilon_l(k) \le \varepsilon_l(n).$

Proof. (a) is true for k > n, since then $v(f_k(a_n)) = v(0) = \infty$ and there are infinitely many l with $r_l(k) = k > n = r_l(n)$. (The indices $[R:I_l]$ are unbounded because Ris infinite and $\bigcap_{l>0} I_l = (0)$.) Now assume $k \le n$.

 $a_n \equiv a_i \mod I_l$ for at most one *i* with $k - r_l(k) \leq i < k - r_l(k) + [R:I_l]$, by definition of weak *v*-sequence. Since (a_n) is really a *v*-sequence and $n \equiv k - r_l(k) + r_l(n)$ mod $[R:I_l]$, we know that $a_n \equiv a_{k-r_l(k)+r_l(n)} \mod I_l$. The condition $a_n \equiv a_i \mod I_l$ for some *i* with $k - r_l(k) \leq i < k$ is therefore equivalent to $r_l(k) > r_l(n)$, such that (a) follows from Proposition 3.3 (a).

If $r_l(k) > r_l(n)$ then $\exists m \leq l$ with $\varepsilon_m(k) > \varepsilon_m(n)$ and if $\varepsilon_m(k) > \varepsilon_m(n)$ then $r_m(k) > r_m(n)$. Therefore, $\forall l \ r_l(k) \leq r_l(n)$, which is equivalent to $v(f_k(a_n)) = 0$ by (a), is equivalent to $\forall l \ \varepsilon_l(k) \leq \varepsilon_l(n)$. Thus (b) follows from (a). \Box

From Proposition 5.1 one can easily derive that $v(f_k(a_n))$ equals the number of carries that occur in the addition of k and n-k in the \mathcal{I} -ary number system. For $a_n = n$ and $v = v_p$ this is Kummer's result [11] that the exact power of p dividing the binomial coefficient $\binom{n}{k}$ equals the number of carries that occur in the addition of k and n-k in base p arithmetic. Kummer's expression of $v_p(\binom{n}{k})$ in terms of the digits of n, k and n-k in base p also generalizes, provided $[I_n:I_{n+1}] = [R:I_1]$ for all n, cf. [8].

5.2 Lemma. For $n \ge 0$, let $I_n = M_v^n \cap R$. If $[R:I_n] = \infty$ and $a, b \in R$ are congruent mod $I_{n+m}, m \ge 0$, then $f(b) \equiv f(a) \mod I_{m+1}$ for all $f \in \text{Int}(R, R_v)$.

Proof. Extend $a = a_0$ to an infinite v-sequence $(a_k)_{k=0}^{\infty}$ for R and construct binomial polynomials $f_k \in \text{Int}(R, R_v)$ from it. Let $f \in \text{Int}(R, R_v)$, then $f = \sum_{k\geq 0} d_k f_k$ with $d_k \in R_v$, since the f_k are an R_v -basis of $\text{Int}(R, R_v)$. Also, $d_0 = f(a_0) = f(a)$.

By Proposition 3.3, $v(f_k(b))$ equals the number of $j \ge 1$ such that for some l with $k - r_j(k) \le l < k$, $b \equiv a_l \mod I_j$. For k > 0, every j with $n \le j \le n + m$ satisfies this condition, because $b \equiv a_0 \mod I_j$ and $r_j(k) = k$. We see that $v(f_k(b)) \ge m + 1$ for all k > 0. Therefore $f(b) \equiv d_0 f_0 = d_0 = f(a) \mod I_{m+1}$. \Box

5.3 Corollary. Let $\alpha_1, \ldots, \alpha_n \in R$. Only if the α_i are pairwise incongruent mod all $I_n = M_v^n \cap R$ with $[R:I_n] = \infty$ can there exist for all $\beta_1, \ldots, \beta_n \in R_v$ an $f \in \operatorname{Int}(R, R_v)$ with $f(\alpha_i) = \beta_i$.

5.4 Lemma. Let L be a finite \mathcal{I} -lattice embedded in a v-sequence a_0, \ldots, a_l of minimal length $l = \ell(L)$, as $L = \{a_n \mid n \in \mathcal{N}\}$, and $(f_k)_{k=0}^l$ the binomial polynomials constructed from a_0, \ldots, a_l . If $n \in \mathcal{N}$ and $k \notin \mathcal{N}$ then $v(f_k(a_n)) > 0$.

Proof. If $k \notin \mathcal{N}$ then $\varepsilon_i(k) \geq d_i > \varepsilon_i(n)$ for some *i* by Lemma 4.5; therefore $v(f_k(a_n)) > 0$ by Proposition 5.1. \Box

5.5 Remark. If A is a finite subset of R then d(A) is finite if and only if the elements of A are pairwise incongruent mod all $I_n = M_v^n \cap R$ with $[R:I_n] = \infty$ and $\ell(A)$ is finite under precisely the same conditions: We know from Theorem 3.5 that $d(A) \leq \ell(A)$. Now if $a, b \in A$ are congruent mod I_n with $[R:I_n] = \infty$ then by Lemma 5.2 there does not exist $f \in Int(R, R_v)$ with f(a) = 0 and f(b) = 1, so $d(A) = \infty$. Conversely, if the elements of A are pairwise incongruent mod all I_n of infinite index then $\ell(A)$ is finite by Theorem 4.6.

5.6 Theorem. For every finite subset A of R, $d(A) = \ell(A)$.

Proof. d(A) and $\ell(A)$ are each finite if and only if A is a finite set that does not contain two elements congruent mod any $I_n = M_v^n \cap R$ of infinite index. Let A be such a set. In view of Theorem 3.5, we need only show $d(A) \ge \ell(A)$. Let a_0, \ldots, a_l be a v-sequence containing A with $l = \ell(A)$. By Lemma 4.5, this is also the minimal length for a v-sequence containing the spanning lattice L of A, therefore $a_0 \in L$ and $a_l \in L$ (otherwise we could chop off the ends of the sequence and re-index starting with 0 to get a shorter v-sequence containing L). Let the sequence $(a_j)_{j=0}^l$ be extended to an infinite v-sequence and let f_j be the binomial polynomial of degree j constructed from it.

Suppose $f \in \text{Int}(R, R_v)$ with $f(a_l) = 1$ and $f(a_i) = 0$ for all $a_i \in L$ with i < l; we claim that deg $f \ge l$. The f_j form an R_v -basis of $\text{Int}(R, R_v)$, so $f = \sum_{j\ge 0} d_j f_j$ with $d_j \in R_v$. We show for $k \le l$ that if $a_k \in L$ then $d_k \equiv \delta_{k,l} \mod I_1$. Induction on k: if k = 0 then $d_0 = f(a_0) = \delta_{0,l}$. For any k with $a_k \in L$, every j < k satisfies (by Lemma 5.4) either $a_j \in L$, in which case $d_j \equiv 0 \mod I_1$ by induction hypothesis, or $f_j(a_k) \in I_1$. Therefore $f(a_k) = d_k + \sum_{j=0}^{k-1} d_j f_j(a_k)$ shows $d_k \equiv f(a_k) = \delta_{k,l}$ mod I_1 . In particular, we have shown $d_l \neq 0$, which implies deg $f \ge l$. \Box

We combine this with the formula for $\ell(A)$ from Theorem 4.6 and the corollary to Lemma 5.2. (The dimensions of a finite subset of R are defined in 4.4.)

5.7 Corollary. Let R be an infinite subring of a discrete valuation ring R_v , $I_n = M_v^n \cap R$ and $\alpha_1, \ldots, \alpha_k$ (distinct) in R.

- 1. If and only if the α_i are pairwise incongruent mod all I_n of infinite index in R there exists for all $\beta_1, \ldots, \beta_k \in R_v$ an $f \in \text{Int}(R, R_v)$ with $f(\alpha_i) = \beta_i$.
- 2. In that case, the minimal d such that for all $\beta_1, \ldots, \beta_k \in R_v$ there exists an $f \in \text{Int}(R, R_v)$ with $f(\alpha_i) = \beta_i$ and $\deg f \leq d$, is $d = \sum_{j=0}^n (d_j 1)[R : I_j]$, where d_0, \ldots, d_n are the dimensions of the set $\{\alpha_1, \ldots, \alpha_k\}$.

6. Interpolation by integer-valued polynomials on Krull rings

We now turn to Krull rings and characterize those arguments $r_1, \ldots, r_n \in R$ that for every choice of values $s_1, \ldots, s_n \in R$ admit an interpolating polynomial $f \in \text{Int}(R)$. We denote the set of prime ideals of height 1 in R by $\text{Spec}^1(R)$.

6.1 Lemma. Let v be a discrete valuation on a field K. Suppose $f = \sum_{k=0}^{n} a_k x^k$ in K[x] splits over K as $f(x) = a_n(x - b_1) \dots (x - b_m)(x - c_1) \dots (x - c_l)$, where $v(b_i) < 0$ and $v(c_i) \ge 0$. Let $\mu = \min_{0 \le k \le n} v(a_k)$ and set $f_+(x) = (x - c_1) \dots (x - c_l)$ then $v(f(r)) = \mu + v(f_+(r))$ for all $r \in R_v$.

Proof. If $r \in R_v$, $v(r - b_i) = v(b_i)$ and $v(f(r)) = v(a_n) + \sum_{i=1}^m v(b_i) + v(f_+(r))$. We will show that $\sum_{i=1}^m v(b_i) = \mu - v(a_n)$. Let $a_n^{-1}f(x) = x^n + a'_{n-1}x^{n-1} + \ldots + a'_0$ then $\mu - v(a_n) = \min_{0 \le k \le n} v(a'_k)$ and a'_k is up to sign the elementary symmetric polynomial of degree n - k in the b_i and c_i , so that $\min_{0 \le k \le n} v(a'_k) = v(a'_{n-m}) = v(e_m(b_1, \ldots, b_m, c_1, \ldots, c_l)) = \sum_{i=1}^m v(b_i)$. \Box

6.2 Lemma. Let R be a domain, $r_1, \ldots, r_{n+1} \in R$ and $a_j = r_j - r_{n+1}$ $(1 \le j \le n)$. Then there exists $f \in \text{Int}(R)$ with $f(r_j) = 0$ $(1 \le j \le n)$ and $f(r_{n+1}) = 1$ if and only if there exists $g \in \text{Int}(R)$ with $g(a_j) = 0$ $(1 \le j \le n)$ and g(0) = 1.

Proof. (\Rightarrow) $g(x):=f(x+r_{n+1})$ (\Leftarrow) $f(x):=g(x-r_{n+1})$

6.3 Theorem. Let R be a Krull ring and let r_1, \ldots, r_{n+1} (distinct) $\in R$ such that $r_i \not\equiv r_{n+1} \mod P$ $(1 \leq i \leq n)$ for all $P \in \operatorname{Spec}^1(R)$ with $[R:P] = \infty$. Then there exists $f \in \operatorname{Int}(R)$ with $f(r_i) = 0$ $(1 \leq i \leq n)$ and $f(r_{n+1}) = 1$.

Proof. Let $a_j = r_j - r_{n+1}$ for $1 \le j \le n$. The a_j are distinct non-zero elements of R, none of which are contained in any $P \in \operatorname{Spec}^1(R)$ with $[R:P] = \infty$. By Lemma 6.2, we want an $f \in \operatorname{Int}(R)$ with $f(a_j) = 0$ for $1 \le j \le n$ and f(0) = 1. We will first construct a polynomial $g \in K[x]$ with $g(a_j) = 0$ for $1 \le j \le n$, such that for every essential valuation v of R and every $r \in R$, $v(g(r)) \ge v(g(0))$ and then set f(x) = g(x)/g(0).

Let $\mathcal{P} = \{P \in \operatorname{Spec}^{1}(R) \mid \exists j \ a_{j} \in P\}$ then \mathcal{P} is a finite set of maximal ideals of finite index. Also let, for $P \in \mathcal{P}$, $m_{P} = \max\{m \in \mathbb{N} \mid \exists j \ a_{j} \in P^{m}\}$ and define $I = \bigcap_{P \in \mathcal{P}} P^{m_{P}} = \prod_{P \in \mathcal{P}} P^{m_{P}}$. Let N = [R:I]. Using the Chinese Remainder Theorem mod $P^{m_{P}+1}$ for $P \in \mathcal{P}$, we can get a system of representatives $(b_{i})_{i=1}^{N}$ of R mod I with the property that for all i and all $P \in \mathcal{P}$, $b_{i} \notin P^{m_{P}+1}$. Note that for $P \in \mathcal{P}$ and $k \leq m_{P}$, the number of b_{i} in any given residue class of P^{k} is $N/[R:P^{k}]$, since I is an ideal contained in P^{k} . In other words,

$$\forall r \in R \ \forall P \in \mathcal{P} \ \forall k \le m_P \quad \left| \{i \mid v_P(r-b_i) \ge k\} \right| = \frac{N}{[R:P^k]}$$

Let $\mathcal{Q} = \{Q \in \operatorname{Spec}^1(R) \setminus \mathcal{P} \mid \exists i \ b_i \in Q\}$ and for $Q \in \mathcal{Q}$ let l_Q be the maximal $l \in \mathbb{N}$ such that $b_i \in Q^l$ for some i. Let $c \in R$ with $v_Q(c) = l_Q + 1$ for all $Q \in \mathcal{Q}$, and $v_P(c) = 0$ for all $P \in \mathcal{P}$. Also, let $\mathcal{Q}' = \{Q \in \operatorname{Spec}^1(R) \mid v_Q(c) > 0\}$, then $\mathcal{Q} \subseteq \mathcal{Q}'$ and $\mathcal{Q}' \cap \mathcal{P} = \emptyset$.

We set $b'_i = c^{-1}b_i$. Then $v_Q(b'_i) < 0$ for all $Q \in Q'$ and $0 \le v_P(b'_i) < m_P + 1$ for all $P \in \mathcal{P}$. If $P \in \mathcal{P}$ and $r \in R$, we have $v_P(r - b'_i) = v_P(c^{-1}(cr - b_i)) = v_P(cr - b_i)$. Therefore, for all $r \in R$,

$$\forall P \in \mathcal{P} \ \forall k \le m_P \ \left| \{i \mid v_P(r - b'_i) \ge k\} \right| = \left| \{i \mid v_P(cr - b_i) \ge k\} \right| = \frac{N}{[R : P^k]}$$

and in particular $\left| \{i \mid v_P(b'_i) \geq k\} \right| = N / [R : P^k].$

Let *m* be the maximal number of a_i in any residue class of *I* in *R* and set $h(x) = \prod_{i=1}^{N} (x - b'_i)^m$. To get a polynomial *g* with $g(a_j) = 0$ for $1 \le j \le n$, we now replace certain roots of *h* with the elements a_1, \ldots, a_n . Since the b_i are a complete system of residues mod *I* in *R*, there exists for every $j \in \{1, \ldots, n\}$ an i_j with $b_{i_j} \equiv ca_j \mod I$.

Let $g(x) = \prod_{i=1}^{mN} (x - c_i)$ be the polynomial resulting from h by replacing, for each $j \in \{1, \ldots, n\}$, one copy of b'_{i_j} in the multiset of roots of h by a_j . (If $i_j = i_k$ for $k \neq j$ this means $ca_j \equiv ca_k \mod I$ and therefore $a_j \equiv a_k \mod I$, and by the definition of m, b'_{i_j} occurs with sufficient multiplicity as a root of h that every $a_k \in a_j + I$ can be exchanged for a different copy of b'_{i_j} .) Note that for $P \in \mathcal{P}$, $0 \leq v_P(c_i) < m_P + 1$ for all i. We claim that for all essential valuations v of R and all $r \in R$, $v(g(r)) \ge v(g(0))$. First, assume $P \in \mathcal{P}$. For all $r \in R$, if $k \le m_P$ then

$$v_P(r - b'_{i_j}) \ge k \iff v_P(r - a_j) \ge k$$
 (*)

(and consequently $|\{i \mid v_P(c_i) \geq k\}| = m |\{i \mid v_P(b'_i) \geq k\}|$). This is so because $v_P(r - b'_{i_j}) = v_P(c^{-1}(cr - b_{i_j})) = v_P(cr - b_{i_j}) = v_P(cr - ca_j + d)$ with $d \in I$, and then $v_P(d) \geq m_P \geq k$ implies that $v_P(cr - ca_j + d) \geq k$ if and only if $v_P(r - a_j) = v_P(cr - ca_j) \geq k$. We abbreviate $\sum_{i=1}^{m_P} \frac{N}{[R:P^k]}$ by γ_P and get

$$v_{P}(g(r)) = \sum_{i=1}^{mN} v_{P}(r-c_{i}) = \sum_{k\geq 1} \left| \{i \mid v_{P}(r-c_{i}) \geq k\} \right| \geq \sum_{k=1}^{mP} \left| \{i \mid v_{P}(r-c_{i}) \geq k\} \right| \stackrel{(*)}{=} m \sum_{k=1}^{mP} \left| \{i \mid v_{P}(r-b_{i}') \geq k\} \right| = m \gamma_{P}$$

while $v_P(g(0)) =$

$$= \sum_{k\geq 1} \left| \{i \mid v_P(c_i) \geq k\} \right| = \sum_{k=1}^{m_P} \left| \{i \mid v_P(c_i) \geq k\} \right| \stackrel{(*)}{=} m \sum_{k=1}^{m_P} \left| \{i \mid v_P(b'_i) \geq k\} \right| = m \gamma_P.$$

Now consider $Q \in Q'$. For all $i, j, v_Q(b'_i) < 0$ and $v_Q(a_j) = 0$. If $g(x) = \sum_{k=0}^{mN} d_k x^k$ and $\mu = \min_{1 \le k \le mN} v_Q(d_k)$ then for all $r \in R$ we have (using Lemma 6.1)

$$v_Q(g(r)) = \mu + v_Q\left(\prod_{j=1}^n (r-a_j)\right) \ge \mu = \mu + v_Q\left(\prod_{j=1}^n a_j\right) = v_Q(g(0)).$$

For the remaining essential valuations v of R, $v(c_i) = 0$ for all i. Therefore, if $r \in R$, $v(g(r)) = \sum_{i=1}^{mN} v(r-c_i) \ge 0 = \sum_{i=1}^{mN} v(c_i) = v(g(0))$.

Now let f(x) = g(x)/g(0). For j = 1, ..., n, $f(a_j) = 0$ because $g(a_j) = 0$, and clearly f(0) = 1. Also, $f \in Int(R)$, because for all $r \in R$ and every essential valuation v of R, $v(g(r)) \ge v(g(0))$ and therefore $v(f(r)) \ge 0$. \Box

6.4 Remark. If P is a prime ideal in a domain R with $[R:P] = \infty$ it is well known that $Int(R, R_P) = R_P[x]$. Every $f \in Int(R, R_P)$ of degree n is determined by its values at n + 1 arguments $a_0, \ldots, a_n \in R$ and is therefore equal to the Lagrange interpolation polynomial

$$\varphi(x) = \sum_{i=0}^{n} f(a_i) \frac{\prod_{j \neq i} (x - a_j)}{\prod_{j \neq i} (a_i - a_j)} \,.$$

If the a_i are chosen pairwise incongruent mod P, then $\varphi(x)$ is clearly in $R_P[x]$.

6.5 Corollary. Let r_1, \ldots, r_n be distinct elements of a Krull ring R. If and only if the r_i are pairwise incongruent mod all $P \in \text{Spec}^1(R)$ with $[R:P] = \infty$ there exists for all $s_1, \ldots, s_n \in R$ an $f \in \text{Int}(R)$ with $f(r_i) = s_i$ for $1 \le i \le n$.

Proof. The "if" part follows from the Theorem, since R-linear combinations of polynomials in Int(R) are again in Int(R). Conversely, if $a, a' \in R$ are congruent

mod $P \in \operatorname{Spec}^{1}(R)$ with $[R:P] = \infty$ then there is no $f \in \operatorname{Int}(R, R_{P})$ with f(a) = 0and f(a') = 1, since $f(a) \equiv f(a') \mod P$ for all $f \in \operatorname{Int}(R, R_{P}) \supseteq \operatorname{Int}(R)$, by Lemma 5.2 (or by the fact that $\operatorname{Int}(R, R_{P}) = R_{P}[x]$, see 6.4). \Box

References

- 1. Y. Amice, Interpolation *p*-adique, Bull. Soc. Math. France **92** (1964) 117–180.
- P.-J. Cahen, Integer-valued polynomials on a subset, Proc. Amer. Math. Soc. 117 (1993), 919–929.
- P.-J. Cahen, Polynômes à valeurs entières, Canad. J. Math. 24 (1972), 747–754.
- 4. P.-J. Cahen and J.-L. Chabert, *Integer-Valued Polynomials* (Mathematical Surveys and Monographs vol. 48), Amer. Math. Soc., Providence RI, 1997.
- L. Carlitz, Finite sums and interpolation formulas over GF[pⁿ, x], Duke Math. J. 15 (1948) 1001–1012.
- J.-L. Chabert, Le groupe de Picard de l'anneau des polynômes à valeurs entières, J. Algebra 150 (1992), 213–230.
- S. Frisch, Integer-valued polynomials on Krull Rings, Proc. Amer. Math. Soc. 124(12) (1996), 3595–3604.
- 8. S. Frisch, Binomial Coefficients Generalized with respect to a Discrete Valuation, to appear in Proc. of 7th Int'l Conf. on Fibonacci Numbers and Their Applications in Graz, Austria, 1996, G. E. Bergum, ed.
- 9. R. Gilmer, W. Heinzer and D. Lantz, The Noetherian property in rings of integer-valued polynomials, Trans. Amer. Math. Soc. **338** (1993), 187–199.
- H. Gunji and D. L. McQuillan, On a class of ideals in an algebraic number field, J. Number Theory 2 (1970), 207–222.
- E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. reine angew. Math. 44 (1852), 93–146.
- D. L. McQuillan, On Prüfer domains of polynomials, J. reine angew. Math. 358 (1985), 162–178.
- D. L. McQuillan, Split primes and integer-valued polynomials, J. Number Theory 43 (1993), 216–219.
- 14. A. Ostrowski, Uber ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math. **149** (1919), 117–124.
- G. Pólya, Uber ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math. 149 (1919), 97–116.
- 16. C. G. Wagner, Interpolation series for continuous functions on π -adic completions of GF(q, x), Acta Arith. 17 (1971), 389–406.

Institut für Mathematik C Technische Universität Graz Steyrergasse 30

INTEGER-VALUED POLYNOMIAL INTERPOLATION

A-8010 Graz, Austria

e-mail: frisch@blah.math.tu-graz.ac.at