INTERPOLATION
 by
 INTEGER-VALUED POLYNOMIALS

Sophie Frisch

Abstract. Let R be a Krull ring with quotient field K and a_{1}, \ldots, a_{n} in R. If and only if the a_{i} are pairwise incongruent mod every height 1 prime ideal of infinite index in R does there exist for all values b_{1}, \ldots, b_{n} in R an interpolating integer-valued polynomial, i.e., an $f \in K[x]$ with $f\left(a_{i}\right)=b_{i}$ and $f(R) \subseteq R$. If S is an infinite subring of a discrete valuation ring R_{v} with quotient field K and a_{1}, \ldots, a_{n} in S are pairwise incongruent mod all $M_{v}^{k} \cap S$ of infinite index in S, we derive a formula (depending on the distribution of the a_{i} among residue classes of the ideals $M_{v}^{k} \cap S$) for the minimal d, such that for all $b_{1}, \ldots, b_{n} \in R_{v}$ there exists a polynomial $f \in K[x]$ of degree at most d with $f\left(a_{i}\right)=b_{i}$ and $f(S) \subseteq R_{v}$.

1. Introduction.

Suppose D is an integral domain with quotient field K. Unless D is a field, it is not always possible, given a_{0}, \ldots, a_{n} (distinct) and b_{1}, \ldots, b_{n} in D, to find a polynomial $f \in D[x]$ with $f\left(a_{i}\right)=b_{i}$. This is so because the function induced on D by a polynomial with coefficients in D must preserve congruences mod every ideal of D. One might say that the next best thing to interpolation with polynomials in $D[x]$ is interpolation with polynomials in $K[x]$ that map every element of D into D and thus induce a function on D.

We will show that this kind of interpolation is possible for arbitrary arguments and values in D whenever D is a Dedekind ring all of whose residue fields are finite, such as the ring of algebraic integers in a number field. (For $D=\mathbb{Z}$ this is easy to see, and for $D=\mathbb{F}_{q}[x]$ it has been shown by Carlitz [5].)

More generally, we find that distinct elements a_{0}, \ldots, a_{n} of a Krull ring R have the property that for all b_{0}, \ldots, b_{n} in R there exists a polynomial $f \in K[x]$ with $f\left(a_{i}\right)=b_{i}$ and $f(R) \subseteq R$ if and only if the a_{i} are pairwise incongruent mod every height 1 prime ideal P of R with $[R: P]=\infty$.

We use the customary notation $\operatorname{Int}(E, D)=\{f \in K[x] \mid f(E) \subseteq D\}$ and $\operatorname{Int}(D)=\operatorname{Int}(D, D)$, where D is a domain with quotient field K and E a subset of K. A polynomial $f \in K[x]$ that maps E into D is called "integer-valued" on E,
following Pólya [15] and Ostrowski [14], who studied $\operatorname{Int}(D)$ where D is the ring of algebraic integers in a number field. More recently, integer-valued polynomials have been investigated by Cahen [2,3], Chabert [6], McQuillan [12,13], Gilmer, Heinzer and Lantz [9], and others. For a survey of the subject, see the monograph by Cahen and Chabert [4].

To interpolate at arguments a_{0}, \ldots, a_{n}, we use linear combinations of the polynomials $f_{k}(x)=\prod_{i=0}^{k-1}\left(x-a_{i}\right) / \prod_{i=0}^{k-1}\left(a_{k}-a_{i}\right), \quad 0 \leq k \leq n$. For this purpose we introduce, when R is an infinite subring of a discrete valuation ring R_{v}, special sequences $\left(a_{k}\right) \subseteq R$ that ensure that the polynomials f_{k} constructed from them are in $\operatorname{Int}\left(R, R_{v}\right)$ and then show how to embed a finite subset of R in a sequence of this kind.

This approach seems justified by the result that the minimal length of such a sequence containing $\alpha_{0}, \ldots, \alpha_{m} \in R$ is equal to the minimal d such that for all $\beta_{0}, \ldots, \beta_{m} \in R_{v}$ there exists an $f \in \operatorname{Int}\left(R, R_{v}\right)$ with $f\left(\alpha_{i}\right)=\beta_{i}$ and $\operatorname{deg} f \leq d$. It also yields a formula for this minimal d, depending on the distribution of the α_{i} among the residue classes of $R \cap M_{v}^{k}$ in R.

2. Sequences.

In this section, R may be any commutative ring with identity. We denote the set of non-negative integers $\{0,1,2, \ldots\}$ by \mathbb{N}_{0}. The kind of sequences below has already been used in [7]; we need to develop some more of their properties.
2.1 Definition. For a set \mathcal{I} of ideals in a commutative ring with identity R, we define a partial \mathcal{I}-sequence to be an indexed set $\left(a_{n}\right)_{n \in \mathcal{N}}$, with $\mathcal{N} \subseteq \mathbb{N}_{0}$, of elements in R , such that for all $I \in \mathcal{I}$ and all $n, m \in \mathcal{N}$

$$
a_{n} \equiv a_{m} \bmod I \quad \Longleftrightarrow \quad[R: I] \mid n-m
$$

(If [$R: I$] is infinite, we regard it as dividing 0 , but no other integer.) A partial \mathcal{I}-sequence is called an \mathcal{I}-sequence if \mathcal{N} is an initial segment of \mathbb{N}_{0}.
2.2 Convention. The length of a finite partial sequence $\left(a_{n}\right)_{n \in \mathcal{N}}$ is $\max (\mathcal{N})$.
2.3 Proposition. For every descending chain $\mathcal{I}=\left\{I_{n} \mid n \in \mathbb{N}\right\}$ of ideals in R
(a) every finite partial \mathcal{I}-sequence can be completed to an \mathcal{I}-sequence,
(b) every finite \mathcal{I}-sequence can be extended to an infinite \mathcal{I}-sequence,
(c) every finite set $A \subseteq R$ of elements pairwise incongruent $\bmod I_{n+1}$, where [$R: I_{n}$] is finite, can be embedded in a finite \mathcal{I}-sequence, and one of length less than $\left[R: I_{n+1}\right]$, if $\left[R: I_{n+1}\right]$ is also finite.

Proof. Given $\left(a_{n}\right)_{n \in \mathcal{N}}$, and $l \geq \max (\mathcal{N})$, we show how to complete $\left(a_{n}\right)$ to an \mathcal{I}-sequence of length l. General principle: For a finite sequence of length l to be an \mathcal{I}-sequence (\mathcal{I} being a descending chain of ideals), it suffices that it satisfy the
requirements with respect to I_{1}, \ldots, I_{k}, if k satisfies $\left[R: I_{k}\right]>l$ or for all $m \geq k$, $I_{m}=I_{k}$.

Case 1: there exists I_{k} of finite index with $\left[R: I_{k}\right]>l$ or $I_{m}=I_{k}$ for $m \geq k$. For $j=1, \ldots, k$ inductively, we assign a different residue class of I_{j} in R to every residue class $\bmod \left[R: I_{j}\right]$ in \mathbb{Z} such that 1) for all $n \in \mathcal{N}, n+\left[R: I_{j}\right] \mathbb{Z}$ is assigned $a_{n}+I_{j}$ (this is consistent because $\left(a_{n}\right)_{n \in \mathcal{N}}$ is a partial \mathcal{I}-sequence) and 2) if $r+I_{j-1}$ was assigned to $m+\left[R: I_{j-1}\right] \mathbb{Z}$, then the residue classes of I_{j} in $r+I_{j-1}$ are assigned to the residue classes of $\left[R: I_{j}\right] \mathbb{Z}$ in $m+\left[R: I_{j-1}\right] \mathbb{Z}$.

Case 2: there is I_{k-1} with $\left[R: I_{k-1}\right]<l$ and $\left[R: I_{k}\right]=\infty$. We proceed as above for $j=0, \ldots, k-1$ and then assign a different residue class of I_{k} to every $n \leq l, n \in \mathbb{N}_{0}$, such that 1) every $n \in \mathcal{N}$ is assigned $a_{n}+I_{k}$ and 2) if $r+I_{k-1}$ was assigned to $m+\left[R: I_{k-1}\right] \mathbb{Z}$, every $n \in m+\left[R: I_{k-1}\right] \mathbb{Z}$ is assigned a residue class of I_{k} in $r+I_{k-1}$.

We now define sequence elements for indices $m \notin \mathcal{N}, 0 \leq m \leq l$, by choosing a_{m} from the residue class of I_{k} assigned to $m+\left[R: I_{k}\right] \mathbb{Z}$ (in case 1) or to m (in case 2). The resulting sequence $\left(a_{n}\right)_{n=0}^{l}$ satisfies the \mathcal{I}-sequence requirements with respect to $I_{1}, \ldots I_{k}$, which is all we need by the general principle stated above. We can extend $\left(a_{n}\right)_{n=0}^{l}$ to an \mathcal{I}-sequence of length $l^{\prime}>l$, and inductively to an infinite \mathcal{I}-sequence by iterating the construction. This shows (a) and (b). It also shows that \mathcal{I}-sequences of arbitrary length exist, since we can start with any $a_{0} \in R$ and extend it to an infinite \mathcal{I}-sequence.

For (c), if [$R: I_{n+1}$] is finite, we take an \mathcal{I}-sequence of length $\left[R: I_{n+1}\right]-1$ and swap every member of A with the unique sequence element congruent to it $\bmod I_{n+1}$. Otherwise, we take an \mathcal{I}-sequence of length $c \cdot\left[R: I_{n}\right]-1, c$ being the maximal number of elements of A in any residue class of I_{n}, and swap every $a \in A$ with a sequence element in $a+I_{n}$, choosing the one in $a+I_{n+1}$, if such exists.
2.4 Definition. For a set \mathcal{I} of ideals in a commutative ring with identity R, we define a weak \mathcal{I}-sequence to be a sequence $\left(a_{n}\right)_{n \in \mathcal{N}}$, where \mathcal{N} is an initial segment of \mathbb{N}_{0}, such that for all $I \in \mathcal{I}$ and all $k \geq 0$ the sequence elements a_{i} with $k[R: I] \leq i<(k+1)[R: I]$ are pairwise incongruent $\bmod I$. (For infinite $[R: I]$, we use the convention $0[R: I]=0$.)

We could also define partial weak \mathcal{I}-sequences and show an analogue of Proposition 2.3, but we will not need this. To compare \mathcal{I}-sequences and weak \mathcal{I}-sequences, we note that

1) An infinite sequence is an \mathcal{I}-sequence if and only if for every $I \in \mathcal{I}$ of finite index, every $[R: I]$ consecutive terms of the sequence form a complete system of residues mod I and the terms of the sequence are pairwise incongruent mod every $I \in \mathcal{I}$ of infinite index.
2) An infinite sequence is a weak \mathcal{I}-sequence if and only if for every $I \in \mathcal{I}$ of finite index, every $[R: I]$ consecutive terms of the sequence starting at an index divisible by $[R: I]$ form a complete system of residues $\bmod I$ and the terms of the sequence are pairwise incongruent mod every $I \in \mathcal{I}$ of infinite index.
2.5 Example. In the ring of integers \mathbb{Z}, for every fixed $k \in \mathbb{Z}$, the sequence $a_{n}=k+n$ for $n \geq 0$ is an \mathcal{I}-sequence for the set of all ideals of \mathbb{Z}.
2.6 Example. If \mathbb{F}_{q} is the finite field of order q then a weak \mathcal{I}-sequence for the set of all ideals of $\mathbb{F}_{q}[x]$ that runs through $\mathbb{F}_{q}[x]$ bijectively can be constructed as follows (Wagner [16], see also Amice [1]): Let $\mathbb{F}_{q}=\left\{r_{0}, \ldots, r_{q-1}\right\}$, where $r_{0}=0$. If $n=\sum_{i=0}^{N} c_{i} q^{i}$ with $0 \leq c_{i}<q$, set $a_{n}=\sum_{i=0}^{N} r_{c_{i}} x^{i}$. This is a weak \mathcal{I}-sequence, since $a_{0}, \ldots, a_{q^{m}-1}$ are precisely the elements of $\mathbb{F}_{q}[x]$ of degree less than m and thus form a system of residues mod every ideal generated by an element of degree m, and the q^{m} sequence elements starting at index $k q^{m}$ (with $0 \leq k<q$) are just the first q^{m} elements shifted by $r_{k} x^{m}: a_{k q^{m}}=r_{k} x^{m}+a_{0}, \ldots, a_{(k+1) q^{m}-1}=r_{k} x^{m}+a_{q^{m}-1}$.
2.7 Example. An infinite \mathcal{I}-sequence exists for every descending chain \mathcal{I} of ideals in a ring R. (Apply Proposition 2.3 (b) to $a_{0}=0$.) If R is a countably infinite ring and \mathcal{I} a descending chain of ideals of finite index in R with $\bigcap_{n \in \mathbb{N}} I_{n}=(0)$ then there exists an \mathcal{I}-sequence that runs through R bijectively [8].

3. Binomial Polynomials.

Let R_{v} be a discrete valuation ring (with value group \mathbb{Z} and $v(0)=\infty$), M_{v} its maximal ideal, K its quotient field and R an infinite subring of R_{v}. (Throughout this paper, discrete valuation always means discrete rank one valuation.) We will define some useful polynomials in $\operatorname{Int}\left(R, R_{v}\right)$, which are modeled after the polynomials

$$
\binom{x}{n}=\frac{x(x-1) \ldots(x-n+1)}{n!}
$$

in $\operatorname{Int}(\mathbb{Z})$ and which we therefore call "binomial polynomials". These polynomials were introduced in [7], generalizing a construction of Pólya [15] that has also been employed by Cahen [3], Gunji and McQuillan [10,12] and others. The sequence a_{i} of elements of R that will replace the sequence of natural numbers in the definition of the binomial polynomials will have to be nicely distributed with respect to the residue classes of $R \cap M_{v}^{n}$ in R, in the following sense:
3.1 Definition. A [partial] v-sequence for R is a [partial] \mathcal{I}-sequence with $\mathcal{I}=\left\{M_{v}{ }^{n} \cap R \mid n \in \mathbb{N}\right\}$. In other words, $\left(a_{n}\right)_{n \in \mathcal{N}} \subseteq R$ is a partial v-sequence for R if and only if for all $n \in \mathbb{N}$ and all $i, j \in \mathcal{N}$,

$$
v\left(a_{i}-a_{j}\right) \geq n \quad \Longleftrightarrow \quad\left[R: M_{v}{ }^{n} \cap R\right] \mid i-j
$$

Similarly, a weak v-sequence for R is defined to be a weak \mathcal{I}-sequence with $\mathcal{I}=\left\{M_{v}{ }^{n} \cap R \mid n \in \mathbb{N}\right\}$. In other words, $\left(a_{n}\right)_{n \geq 0}$ is a weak v-sequence for R if and only if for all $n \in \mathbb{N}$ and all i, j and $k \in \mathbb{N}_{0}$,

$$
k\left[R: M_{v}{ }^{n} \cap R\right] \leq i<j<(k+1)\left[R: M_{v}{ }^{n} \cap R\right] \quad \Longrightarrow \quad v\left(a_{i}-a_{j}\right)<n
$$

(If $\left[R: M_{v}{ }^{n} \cap R\right.$] is infinite, the elements of a [partial, weak] v-sequence for R must be pairwise incongruent $\bmod M_{v}{ }^{n} \cap R$.)

For brevity, we write I_{n} for $M_{v}{ }^{n} \cap R$ from this point on.
Note that by the Krull Intersection Theorem, $\bigcap_{k=0}^{\infty} I_{k}=(0)$. Therefore, there exists for every finite subset A of R an $n \in \mathbb{N}$ such that distinct elements of A are incongruent $\bmod I_{n}$. Since R is infinite, the indices $\left[R: I_{k}\right]$ grow arbitrarily large or are infinite from some k on.
3.2 Definition. The binomial polynomials constructed from a weak v-sequence $\left(a_{n}\right)$ are

$$
f_{0}=1 \quad \text { and } \quad f_{n}(x)=\frac{\prod_{i=0}^{n-1}\left(x-a_{i}\right)}{\prod_{i=0}^{n-1}\left(a_{n}-a_{i}\right)} \quad \text { for } n>0
$$

3.3 Proposition. Let $\left(a_{i}\right)_{i=0}^{m}$ be a weak v-sequence for R and $\left(f_{i}\right)_{i=0}^{m}$ the binomial polynomials constructed from it. For $j, k \in \mathbb{N}_{0}$ let $r_{j}(k)$ be the remainder of k under integral division by $\left[R: I_{j}\right]$, if $\left[R: I_{j}\right]$ is finite, and $r_{j}(k)=k$ otherwise. Then for all $r \in R$ and $0 \leq k \leq m$
(a) $v\left(f_{k}(r)\right)=\mid\left\{j \geq 1 \mid r \equiv a_{l} \bmod I_{j}\right.$ for some l with $\left.k-r_{j}(k) \leq l<k\right\} \mid$,
(b) in particular, $f_{k} \in \operatorname{Int}\left(R, R_{v}\right)$.

Proof. Let $g_{k}(x)=\prod_{i=0}^{k-1}\left(x-a_{i}\right)$, then $v\left(f_{k}(r)\right)=v\left(g_{k}(r)\right)-v\left(g_{k}\left(a_{k}\right)\right)$. For any $s \in R, v\left(g_{k}(s)\right)=\sum_{j \geq 1}\left|\left\{i \mid 0 \leq i<k, s \equiv a_{i} \bmod I_{j}\right\}\right|$. Let $q_{j}(r)=\left[\frac{k}{\left[R: I_{j}\right]}\right]$, then $k=q_{j}(k)\left[R: I_{j}\right]+r_{j}(k)$, and the sequence a_{0}, \ldots, a_{k-1} consists of $q_{j}(r)$ complete systems of residues mod I_{j} comprising $a_{0}, \ldots, a_{k-r_{j}(k)-1}$ and $r_{j}(k)$ extra terms a_{l} for $k-r_{j}(k) \leq l<k$, pairwise incongruent $\bmod I_{j}$.

Now $\left|\left\{i \mid 0 \leq i<k, s \equiv a_{i} \bmod I_{j}\right\}\right|$ is either $q_{j}(k)$ or $q_{j}(k)+1$, the latter being the case if and only if s is congruent $\bmod I_{j}$ to one of the elements a_{l} with $k-r_{j}(k) \leq l<k$. This extra +1 never occurs with $s=a_{k}$, since a_{k} is not congruent to any a_{l} with $k-r_{j}(k) \leq l<k$ by definition of weak v-sequence.
3.4 Remark. It is easy to see that the binomial polynomials f_{k} constructed from a weak v-sequence $\left(a_{i}\right)$ for R, where R is an infinite subring of a discrete valuation ring R_{v}, give a basis of the free R_{v}-module $\operatorname{Int}\left(R, R_{v}\right)$, cf. [7]. Indeed, $\operatorname{deg} f_{k}=k$ shows that the f_{k} are a K-basis of $K[x]$. Since they are in $\operatorname{Int}\left(R, R_{v}\right)$, they form a basis of a free R_{v}-module $F \subseteq \operatorname{Int}\left(R, R_{v}\right)$. To see $\operatorname{Int}\left(R, R_{v}\right) \subseteq F$, consider $f=\sum d_{k} f_{k}$ with $d_{k} \in K$. A simple induction shows that for $f \in \operatorname{Int}\left(R, R_{v}\right)$ the d_{k} are actually in $R_{v}: d_{0}=f\left(a_{0}\right)$, and $d_{k}=f\left(a_{k}\right)-\sum_{i=0}^{k-1} d_{i} f_{i}\left(a_{k}\right)$ (by the facts that $f_{k}\left(a_{k}\right)=1$ and $f_{j}\left(a_{k}\right)=0$ for $\left.j>k\right)$. The last argument also shows that for a polynomial $f \in K[x]$ with $\operatorname{deg} f<m$ to be in $\operatorname{Int}\left(R, R_{v}\right)$ it suffices that $f\left(a_{i}\right) \in R_{v}$ for $0 \leq i<m$.

If a domain S with quotient field K is the intersection of a family of discrete valuation rings in $K, S=\bigcap_{v \in \mathcal{V}} R_{v}$, then for every subring R of S we have
$\operatorname{Int}(R, S)=\bigcap_{v \in \mathcal{V}} \operatorname{Int}\left(R, R_{v}\right)$. In particular this holds if S is a Krull ring and \mathcal{V} the set of its essential valuations.
3.5 Theorem. Let R be an infinite subring of a Krull ring S. If $a_{0}, \ldots, a_{n} \in R$ is a weak v-sequence for R for all essential valuations v of S simultaneously then for all $b_{0}, \ldots, b_{n} \in S$ there exists $f \in \operatorname{Int}(R, S)$ with $f\left(a_{i}\right)=b_{i}(0 \leq i \leq n)$ and $\operatorname{deg} f \leq n$.

Proof. Let $\left(f_{i}\right)_{i=0}^{n}$ be the binomial polynomials constructed from $\left(a_{i}\right)_{i=0}^{n}$. For every essential valuation v of S, we know from Proposition 3.3 (b) that the f_{i}, and therefore R_{v}-linear combinations of them, are in $\operatorname{Int}\left(R, R_{v}\right)$. Therefore S-linear combinations of the f_{i} are in $\bigcap_{v} \operatorname{Int}\left(R, R_{v}\right)=\operatorname{Int}(R, S)$. We define coefficients $d_{k} \in S$ inductively, such that $f=\sum_{k=0}^{n} d_{k} f_{k}$ maps a_{i} to b_{i} for $0 \leq i \leq n$: let $d_{0}=b_{0}$, and $d_{m}=b_{m}-\sum_{k=0}^{m-1} d_{k} f_{k}\left(a_{m}\right)$. Since $f_{k}\left(a_{k}\right)=1$ and $f_{m}\left(a_{k}\right)=0$ for $m>k$, we get $f\left(a_{m}\right)=d_{m}+\sum_{k=0}^{m-1} d_{k} f_{k}\left(a_{m}\right)=b_{m}$ as required.
3.6 Corollary. (Carlitz [5]) Let $\alpha_{1}, \ldots, \alpha_{k}$ be distinct elements of $\mathbb{F}_{q}[x]$ and $d=\max _{1 \leq i \leq k} \operatorname{deg}_{x} \alpha_{i}$. Then for all $\beta_{1}, \ldots, \beta_{k} \in \mathbb{F}_{q}[x]$ there exists $f(t) \in \operatorname{Int}\left(\mathbb{F}_{q}[x]\right)$ with $\operatorname{deg}_{t} f<q^{d}$ and $f\left(\alpha_{i}\right)=\beta_{i}$ for $i=1, \ldots, k$.

Proof. Wagner's sequence (Example 2.6) is a weak \mathcal{I}-sequence for the set of all ideals of $\mathbb{F}_{q}[x]$ and therefore a fortiori a weak v-sequence for all essential valuations of $\mathbb{F}_{q}[x]$. Its initial segment $a_{0}, \ldots, a_{q^{d}-1}$ consists of all elements of $\mathbb{F}_{q}[x]$ of degree at most d, with $\alpha_{1}, \ldots, \alpha_{k}$ among them.

Carlitz proved this by showing that a polynomial $f \in \mathbb{F}_{q}(x)[t]$ with $\operatorname{deg}_{t}(f)<q^{m}$ is in $\operatorname{Int}\left(\mathbb{F}_{q}[x]\right)$ if and only if it maps all $\alpha \in \mathbb{F}_{q}[x]$ with $\operatorname{deg}_{x}(\alpha)<m$ to values in $\mathbb{F}_{q}[x]$ ([5] Theorem 7.1). Since there are q^{m} elements of degree less than m in $\mathbb{F}_{q}[x]$, the Lagrange interpolation polynomial for these arguments will be of degree $q^{m}-1$ or less and will therefore be in $\operatorname{Int}\left(\mathbb{F}_{q}[x]\right)$ provided the values prescribed for the q^{m} arguments are in $\mathbb{F}_{q}[x]$. To relate Carlitz's proof to the one using Wagner's sequence, note that a polynomial $f \in K[x]$ with $\operatorname{deg} f<m$ that takes values $f\left(a_{i}\right) \in R_{v}$ on a v-sequence a_{0}, \ldots, a_{m-1} for R is (by the argument in 3.4) an R_{v}-linear combination of the binomial polynomials f_{0}, \ldots, f_{m-1} constructed from the v-sequence and therefore in $\operatorname{Int}\left(R, R_{v}\right)$.

Unfortunately, weak v-sequences for all essential valuations of a Krull ring simultaneously seem to be rare, and we will use a different approach to interpolation with integer-valued polynomials on Krull rings in section 6.

Locally, however, we can use v-sequences to construct interpolating integervalued polynomials as follows: Let $\alpha_{1}, \ldots, \alpha_{k}$ be elements of an infinite subring R of a discrete valuation ring R_{v} that are pairwise incongruent \bmod all $M_{v}^{n} \cap R$ of infinite index in R. By Proposition 2.3, $\alpha_{1}, \ldots, \alpha_{k}$ can be embedded in a v-sequence a_{0}, \ldots, a_{ℓ}. Therefore there exists for arbitrary values $\beta_{1}, \ldots, \beta_{k} \in R_{v}$ an $f \in \operatorname{Int}\left(R, R_{v}\right)$ with $\operatorname{deg} f \leq \ell$ that maps α_{i} to β_{i}, by Theorem 3.5.

In section 5 we will see that the minimal length ℓ of a v-sequence for R containing $\alpha_{1}, \ldots, \alpha_{k}$ coincides with the minimal d such that for arbitrary values
$\beta_{1}, \ldots, \beta_{k}$ in R_{v} there exists an $f \in \operatorname{Int}\left(R, R_{v}\right)$ with $\operatorname{deg} f \leq d$ that maps α_{i} to β_{i}; so that, in a sense, interpolation by polynomials in $\operatorname{Int}\left(R, R_{v}\right)$ using v-sequences yields interpolation polynomials of best possible degree.

4. Embedding sets in v-sequences of minimal length.

As before, R is an infinite subring of a discrete valuation ring $R_{v}, I_{n}=M_{v}^{n} \cap R$ and $\mathcal{I}=\left\{I_{n} \mid n \geq 0\right\}$. Recall that the length of a sequence $\left(a_{i}\right)_{i=0}^{n}$ is n, by convention.
4.1 Definition. Let A be a finite subset of R.

1. We define $d(A)$ to be the minimal $d \in \mathbb{N}_{0}$ such that for every choice of values $r_{a} \in R_{v}$ for $a \in A$ there exists $f \in \operatorname{Int}\left(R, R_{v}\right)$ with $f(a)=r_{a}$ for all $a \in A$ and $\operatorname{deg} f \leq d$, if such a d exists; otherwise $d(A)=\infty$.
2. If A is not embeddable in any v-sequence in R then $\ell(A)=\infty$; otherwise we define $\ell(A)$ to be the minimal ℓ such that there exists a v-sequence a_{0}, \ldots, a_{ℓ} in R containing A.
4.2 Corollary to Theorem 3.5. For every finite subset A of $R, \quad d(A) \leq \ell(A)$.

We will show that $d(A)=\ell(A)$ in section 5 ; but before, we want to derive a formula for $\ell(A)$. In order to do this, we first consider sets that have a simple structure with respect to the chain of ideals $I_{n}=M_{v}{ }^{n} \cap R, \quad n \geq 0$.
4.3 Definition. We call a non-empty set $L \subseteq R$ an \mathcal{I}-lattice of dimensions $\left(d_{k}\right)_{k \geq 0}$ if, for all $k \geq 0, L$ intersects exactly d_{k} residue classes of I_{k+1} in every residue class of I_{k} that it intersects. If L is finite, then $d_{k}=1$ for all but finitely many k, and we speak of dimensions d_{0}, \ldots, d_{n}, meaning $d_{k}=1$ for $k>n$.
4.4 Definition. To every finite set $A \subseteq R$ whose elements are pairwise incongruent $\bmod I_{n+1}$, where $\left[R: I_{n}\right]$ is finite, we associate dimensions $\left(d_{k}\right)_{k \geq 0}$ and an \mathcal{I}-lattice $L_{A} \subseteq A$, the spanning lattice of A, inductively as follows:

- $L_{n}=A$ and $d_{k}=1$ for $k>n$,
- d_{k} is the maximal number of residue classes of I_{k+1} that L_{k} intersects in any residue class of I_{k}, for $0 \leq k \leq n$;
- L_{k-1} consists of the elements of L_{k} in those residue classes of I_{k} that L_{k} intersects in d_{k} residue classes of I_{k+1}, for $1 \leq k \leq n$;
and L_{A} is L_{0}, which is easily seen to be an \mathcal{I}-lattice of dimensions d_{0}, \ldots, d_{n}.
The minimal length of a v-sequence into which a finite set can be embedded is most conveniently expressed in the mixed radix number system given by the sequence $\left[R: I_{l}\right], l \geq 0$:

Every $n \in \mathbb{N}_{0}$ has a unique representation $n=\sum_{l=0}^{\infty} \varepsilon_{l}(n)\left[R: I_{l}\right]$, where $0 \leq \varepsilon_{l}(n)<\left[I_{l}: I_{l+1}\right]$. Addition of numbers is performed by addition with carry on the vectors of digits, where a carry from position l to position $l+1$ occurs when
the l-th digit reaches or exceeds $\left[I_{l}: I_{l+1}\right]$. We will call this the \mathcal{I}-ary number system and $\varepsilon_{l}(n)$ the l-th digit in the \mathcal{I}-ary representation of n.

If $\left[R_{v}: M_{v}\right]$ is finite, then $\left[I_{l}: I_{l+1}\right]$ divides $\left[M_{n}{ }^{l}: M_{v}{ }^{l+1}\right]=\left[R_{v}: M_{v}\right]$; if $\left[R_{v}: M_{v}\right]$ is infinite, however, the digits need not be uniformly bounded or even bounded at all. If infinite indices $\left[R: I_{l}\right]$ occur, the system is somewhat degenerate, with $0 \leq \varepsilon_{N}(n)<\infty$ for the maximal $N \in \mathbb{N}_{0}$ with $\left[R: I_{N}\right]$ finite and $\varepsilon_{l}(n)=0$ for all n, if $l>N$. (We use the convention that $0 \cdot\left[R: I_{l}\right]=0$ even if $\left[R: I_{l}\right]=\infty$.)

Recall that by Proposition 2.3 (a) every partial v-sequence can be completed to a v-sequence of the same length. Therefore, $\ell(A)$ is equal to the minimal ℓ such that A can be arranged as a partial v-sequence of length ℓ.
4.5 Lemma. Let L be an \mathcal{I}-lattice of dimensions d_{0}, \ldots, d_{m}, with [$R: I_{m}$] finite. For every partial v-sequence $\left(l_{n}\right)_{n \in \mathcal{N}}$ of minimal length formed by L, we have $\mathcal{N}=\left\{n \in \mathbb{N}_{0} \mid \varepsilon_{i}(n)<d_{i}\right.$ for all i $\}$. Consequently, $\ell(L)=\sum_{k=0}^{m}\left(d_{k}-1\right)\left[R: I_{k}\right]$.

Proof. Induction on m. For $m=0, L$ consists of d_{0} elements mutually incongruent modulo I_{1}. Any shortest partial v-sequence is just a listing of the elements of L, in any order, as $l_{0}, \ldots, l_{d_{0}-1}$, therefore $\mathcal{N}=\left\{0, \ldots, d_{0}-1\right\}$ and $\ell(L)=d_{0}-1$.

Now let L be an \mathcal{I}-lattice of dimensions $d_{0}, \ldots, d_{m}, m>0$. We can arrange L as a partial v-sequence with index set $\mathcal{N}=\left\{n \in \mathbb{N}_{0} \mid \forall i \quad \varepsilon_{i}(n)<d_{i}\right\}$ as follows: Choose a system of representatives $L^{\prime} \subseteq L$ of the residue classes of I_{m} that L intersects. L^{\prime} is an \mathcal{I}-lattice of dimensions d_{0}, \ldots, d_{m-1}. Arrange L^{\prime} as a partial v-sequence $\left(l_{n}\right)_{n \in \mathcal{N}^{\prime}}$ of minimal length and for each $n \in \mathcal{N}^{\prime}$ assign indices $n+j\left[R: I_{m}\right], j=1, \ldots, d_{m}-1$ to the elements of $L \backslash L^{\prime}$ in $l_{n}+I_{m}$. Since by induction hypothesis \mathcal{N}^{\prime} is the set of all $n=\sum_{j=0}^{m-1} k_{j}\left[R: I_{j}\right]$ with $0 \leq k_{j}<d_{j}, \mathcal{N}$ is the set of all $n=\sum_{j=0}^{m} k_{j}\left[R: I_{j}\right]$ with $0 \leq k_{j}<d_{j}$. The length of this partial v-sequence is $\max (\mathcal{N})=\sum_{k=0}^{m}\left(d_{k}-1\right)\left[R: I_{k}\right]$.

Now, given any v-sequence of minimal length $\left(l_{n}\right)_{n \in \mathcal{N}}$ formed by L, we show that it must be of this kind: From every residue class of I_{m} that L intersects, take the element of lowest index. These elements form a lattice L^{\prime} of dimensions d_{0}, \ldots, d_{m-1}, arranged as a partial v-sequence with index set $\mathcal{N}^{\prime} \subseteq \mathcal{N}$. The indices of the d_{m} elements of L in each residue class of I_{m} are part of an arithmetic progression of period $\left[R: I_{m}\right]$ starting at $n \in \mathcal{N}^{\prime}$. If, for some $n \in \mathcal{N}^{\prime}$, the elements of L in $l_{n}+I_{m}$ do not have indices $n+j\left[R: I_{m}\right], j=0, \ldots, d_{m}-1$, then some index is at least $n+d_{m}\left[R: I_{m}\right] \geq d_{m}\left[R: I_{m}\right]>\sum_{k=0}^{m}\left(d_{k}-1\right)\left[R: I_{k}\right]$, which is more than the length of the sequence constructed earlier. Therefore, we must have $\mathcal{N}=\left\{n+j\left[I: I_{m}\right] \mid n \in \mathcal{N}^{\prime}, 0 \leq j<d_{m}\right\}$, the length of the sequence being $\max \left(\mathcal{N}^{\prime}\right)+\left(d_{m}-1\right)\left[R: I_{m}\right]$. This is minimal only if $\max \left(\mathcal{N}^{\prime}\right)$ is minimal, i.e., if L^{\prime} forms a partial v-sequence of minimal length.
4.6 Theorem. Let $A \subseteq R$ be a finite set whose elements are pairwise incongruent $\bmod I_{n+1}$, where $\left[R: I_{n}\right]$ is finite, and d_{0}, \ldots, d_{n} the dimensions of A. Then $\ell(A)=\sum_{j=0}^{n}\left(d_{j}-1\right)\left[R: I_{j}\right]$.
Proof. We know $\ell(A) \geq \ell\left(L_{A}\right)=\sum_{j=0}^{n}\left(d_{j}-1\right)\left[R: I_{j}\right]$. By Proposition 2.3 (a) it suffices to arrange A as a partial v-sequence of length $\sum_{j=0}^{n}\left(d_{j}-1\right)\left[R: I_{j}\right]$. We
define a chain of subsets of A that allows us to do this inductively. Let $A_{n}=A$ and for $0<k \leq n$ let $A_{k-1} \subseteq A_{k}$ be a system of representatives of those residue classes of I_{k} that A_{k} intersects in the maximal number of elements. It is clear that this maximal number is d_{k}. A_{0} consists of d_{0} elements mutually incongruent mod I_{1}. Listing A_{0} as $a_{0}, \ldots, a_{d_{0}-1}$ in any order makes A_{0} into a partial v-sequence of length $d_{0}-1$. Assuming we have arranged A_{k-1} as a partial v-sequence $\left(a_{n}\right)_{n \in \mathcal{N}}$ of length $\sum_{j=0}^{k-1}\left(d_{j}-1\right)\left[R: I_{j}\right]$, we will extend it to an arrangement of A_{k} as a partial v-sequence of length $\sum_{j=0}^{k}\left(d_{j}-1\right)\left[R: I_{j}\right]$.
A_{k} contains d_{k} elements in $a_{n}+I_{k}$ for each $n \in \mathcal{N}$, plus less than d_{k} elements each in some further residue classes of I_{k}. Let $B \subseteq A_{k}$ be a system of representatives of these further classes. By considering a completion of $\left(a_{n}\right)_{n \in \mathcal{N}}$ to a v-sequence of length $\left[R: I_{k}\right]-1$ (which exists by Proposition 2.3) and assigning each $b \in B$ the index of the unique sequence element congruent to it $\bmod I_{k}$, we get a partial v-sequence arrangement of $A_{k-1} \cup B$ of length less than $\left[R: I_{k}\right]$. We assign consecutive indices in an arithmetic progression of period $\left[R: I_{k}\right]$, starting at the representative in $A_{k-1} \cup B$, to the elements of A_{k} in each residue class of I_{k}. The highest index in this partial v-sequence arrangement of A_{k} is the highest index in a progression starting at a representative in A_{k-1}, namely $\max (\mathcal{N})+\left(d_{k}-1\right)\left[R: I_{k}\right]=\sum_{j=0}^{k}\left(d_{j}-1\right)\left[R: I_{j}\right]$, since a progression starting at $b \in B$ with index $n<\left[R: I_{k}\right]$ and containing the $l<d_{k}$ elements of $\left(b+I_{k}\right) \cap A_{k}$ only reaches index $n+(l-1)\left[R: I_{k}\right]<l\left[R: I_{k}\right] \leq\left(d_{k}-1\right)\left[R: I_{k}\right]$.

5. The degree of the interpolating polynomial.

If $n=\sum_{l=0}^{\infty} \varepsilon_{l}(n)\left[R: I_{l}\right]$ with $0 \leq \varepsilon_{l}(n)<\left[I_{l}: I_{l+1}\right]$, we set $r_{j}(n)=\sum_{l=0}^{j-1} \varepsilon_{l}(n)\left[R: I_{l}\right]$. This is consistent with our earlier convention that $r_{j}(n)$ is the remainder of n under integral division by $\left[R: I_{j}\right]$ if $\left[R: I_{j}\right]$ is finite, and $r_{j}(n)=n$ otherwise.
5.1 Proposition. Let $\left(a_{n}\right)$ be a v-sequence for R (of length at least k) and f_{k} the binomial polynomial of degree k constructed from it. Then
(a) $v\left(f_{k}\left(a_{n}\right)\right)=\left|\left\{l \geq 1 \mid r_{l}(k)>r_{l}(n)\right\}\right|$,
(b) $v\left(f_{k}\left(a_{n}\right)\right)=0 \Longleftrightarrow \forall l \quad \varepsilon_{l}(k) \leq \varepsilon_{l}(n)$.

Proof. (a) is true for $k>n$, since then $v\left(f_{k}\left(a_{n}\right)\right)=v(0)=\infty$ and there are infinitely many l with $r_{l}(k)=k>n=r_{l}(n)$. (The indices $\left[R: I_{l}\right]$ are unbounded because R is infinite and $\bigcap_{l \geq 0} I_{l}=(0)$.) Now assume $k \leq n$.
$a_{n} \equiv a_{i} \bmod I_{l}$ for at most one i with $k-r_{l}(k) \leq i<k-r_{l}(k)+\left[R: I_{l}\right]$, by definition of weak v-sequence. Since $\left(a_{n}\right)$ is really a v-sequence and $n \equiv k-r_{l}(k)+r_{l}(n)$ $\bmod \left[R: I_{l}\right]$, we know that $a_{n} \equiv a_{k-r_{l}(k)+r_{l}(n)} \bmod I_{l}$. The condition $a_{n} \equiv a_{i} \bmod$ I_{l} for some i with $k-r_{l}(k) \leq i<k$ is therefore equivalent to $r_{l}(k)>r_{l}(n)$, such that (a) follows from Proposition 3.3 (a).

If $r_{l}(k)>r_{l}(n)$ then $\exists m \leq l$ with $\varepsilon_{m}(k)>\varepsilon_{m}(n)$ and if $\varepsilon_{m}(k)>\varepsilon_{m}(n)$ then $r_{m}(k)>r_{m}(n)$. Therefore, $\forall l r_{l}(k) \leq r_{l}(n)$, which is equivalent to $v\left(f_{k}\left(a_{n}\right)\right)=0$ by (a), is equivalent to $\forall l \varepsilon_{l}(k) \leq \varepsilon_{l}(n)$. Thus (b) follows from (a).

From Proposition 5.1 one can easily derive that $v\left(f_{k}\left(a_{n}\right)\right)$ equals the number of carries that occur in the addition of k and $n-k$ in the \mathcal{I}-ary number system. For $a_{n}=n$ and $v=v_{p}$ this is Kummer's result [11] that the exact power of p dividing the binomial coefficient $\binom{n}{k}$ equals the number of carries that occur in the addition of k and $n-k$ in base p arithmetic. Kummer's expression of $\left.v_{p}\binom{n}{k}\right)$ in terms of the digits of n, k and $n-k$ in base p also generalizes, provided $\left[I_{n}: I_{n+1}\right]=\left[R: I_{1}\right]$ for all n, cf. [8].
5.2 Lemma. For $n \geq 0$, let $I_{n}=M_{v}^{n} \cap R$. If $\left[R: I_{n}\right]=\infty$ and $a, b \in R$ are congruent $\bmod I_{n+m}, m \geq 0$, then $f(b) \equiv f(a) \bmod I_{m+1}$ for all $f \in \operatorname{Int}\left(R, R_{v}\right)$.

Proof. Extend $a=a_{0}$ to an infinite v-sequence $\left(a_{k}\right)_{k=0}^{\infty}$ for R and construct binomial polynomials $f_{k} \in \operatorname{Int}\left(R, R_{v}\right)$ from it. Let $f \in \operatorname{Int}\left(R, R_{v}\right)$, then $f=$ $\sum_{k \geq 0} d_{k} f_{k}$ with $d_{k} \in R_{v}$, since the f_{k} are an R_{v}-basis of $\operatorname{Int}\left(R, R_{v}\right)$. Also, $d_{0}=f\left(a_{0}\right)=f(a)$.

By Proposition 3.3, $v\left(f_{k}(b)\right)$ equals the number of $j \geq 1$ such that for some l with $k-r_{j}(k) \leq l<k, b \equiv a_{l} \bmod I_{j}$. For $k>0$, every j with $n \leq j \leq n+m$ satisfies this condition, because $b \equiv a_{0} \bmod I_{j}$ and $r_{j}(k)=k$. We see that $v\left(f_{k}(b)\right) \geq m+1$ for all $k>0$. Therefore $f(b) \equiv d_{0} f_{0}=d_{0}=f(a) \bmod I_{m+1}$.
5.3 Corollary. Let $\alpha_{1}, \ldots, \alpha_{n} \in R$. Only if the α_{i} are pairwise incongruent \bmod all $I_{n}=M_{v}^{n} \cap R$ with $\left[R: I_{n}\right]=\infty$ can there exist for all $\beta_{1}, \ldots, \beta_{n} \in R_{v}$ an $f \in \operatorname{Int}\left(R, R_{v}\right)$ with $f\left(\alpha_{i}\right)=\beta_{i}$.
5.4 Lemma. Let L be a finite \mathcal{I}-lattice embedded in a v-sequence a_{0}, \ldots, a_{l} of minimal length $l=\ell(L)$, as $L=\left\{a_{n} \mid n \in \mathcal{N}\right\}$, and $\left(f_{k}\right)_{k=0}^{l}$ the binomial polynomials constructed from a_{0}, \ldots, a_{l}. If $n \in \mathcal{N}$ and $k \notin \mathcal{N}$ then $v\left(f_{k}\left(a_{n}\right)\right)>0$.

Proof. If $k \notin \mathcal{N}$ then $\varepsilon_{i}(k) \geq d_{i}>\varepsilon_{i}(n)$ for some i by Lemma 4.5; therefore $v\left(f_{k}\left(a_{n}\right)\right)>0$ by Proposition 5.1.
5.5 Remark. If A is a finite subset of R then $d(A)$ is finite if and only if the elements of A are pairwise incongruent \bmod all $I_{n}=M_{v}^{n} \cap R$ with $\left[R: I_{n}\right]=\infty$ and $\ell(A)$ is finite under precisely the same conditions: We know from Theorem 3.5 that $d(A) \leq \ell(A)$. Now if $a, b \in A$ are congruent $\bmod I_{n}$ with $\left[R: I_{n}\right]=\infty$ then by Lemma 5.2 there does not exist $f \in \operatorname{Int}\left(R, R_{v}\right)$ with $f(a)=0$ and $f(b)=1$, so $d(A)=\infty$. Conversely, if the elements of A are pairwise incongruent \bmod all I_{n} of infinite index then $\ell(A)$ is finite by Theorem 4.6.
5.6 Theorem. For every finite subset A of $R, d(A)=\ell(A)$.

Proof. $d(A)$ and $\ell(A)$ are each finite if and only if A is a finite set that does not contain two elements congruent mod any $I_{n}=M_{v}^{n} \cap R$ of infinite index. Let A be such a set. In view of Theorem 3.5, we need only show $d(A) \geq \ell(A)$. Let a_{0}, \ldots, a_{l} be a v-sequence containing A with $l=\ell(A)$. By Lemma 4.5, this is also the minimal length for a v-sequence containing the spanning lattice L of A, therefore $a_{0} \in L$ and $a_{l} \in L$ (otherwise we could chop off the ends of the sequence
and re-index starting with 0 to get a shorter v-sequence containing L). Let the sequence $\left(a_{j}\right)_{j=0}^{l}$ be extended to an infinite v-sequence and let f_{j} be the binomial polynomial of degree j constructed from it.

Suppose $f \in \operatorname{Int}\left(R, R_{v}\right)$ with $f\left(a_{l}\right)=1$ and $f\left(a_{i}\right)=0$ for all $a_{i} \in L$ with $i<l$; we claim that $\operatorname{deg} f \geq l$. The f_{j} form an R_{v}-basis of $\operatorname{Int}\left(R, R_{v}\right)$, so $f=\sum_{j \geq 0} d_{j} f_{j}$ with $d_{j} \in R_{v}$. We show for $k \leq l$ that if $a_{k} \in L$ then $d_{k} \equiv \delta_{k, l} \bmod I_{1}$. Induction on k : if $k=0$ then $d_{0}=f\left(a_{0}\right)=\delta_{0, l}$. For any k with $a_{k} \in L$, every $j<k$ satisfies (by Lemma 5.4) either $a_{j} \in L$, in which case $d_{j} \equiv 0 \bmod I_{1}$ by induction hypothesis, or $f_{j}\left(a_{k}\right) \in I_{1}$. Therefore $f\left(a_{k}\right)=d_{k}+\sum_{j=0}^{k-1} d_{j} f_{j}\left(a_{k}\right)$ shows $d_{k} \equiv f\left(a_{k}\right)=\delta_{k, l}$ $\bmod I_{1}$. In particular, we have shown $d_{l} \neq 0$, which implies $\operatorname{deg} f \geq l$.

We combine this with the formula for $\ell(A)$ from Theorem 4.6 and the corollary to Lemma 5.2. (The dimensions of a finite subset of R are defined in 4.4.)
5.7 Corollary. Let R be an infinite subring of a discrete valuation ring R_{v}, $I_{n}=M_{v}^{n} \cap R$ and $\alpha_{1}, \ldots, \alpha_{k}$ (distinct) in R.

1. If and only if the α_{i} are pairwise incongruent mod all I_{n} of infinite index in R there exists for all $\beta_{1}, \ldots, \beta_{k} \in R_{v}$ an $f \in \operatorname{Int}\left(R, R_{v}\right)$ with $f\left(\alpha_{i}\right)=\beta_{i}$.
2. In that case, the minimal d such that for all $\beta_{1}, \ldots, \beta_{k} \in R_{v}$ there exists an $f \in \operatorname{Int}\left(R, R_{v}\right)$ with $f\left(\alpha_{i}\right)=\beta_{i}$ and $\operatorname{deg} f \leq d$, is $d=\sum_{j=0}^{n}\left(d_{j}-1\right)\left[R: I_{j}\right]$, where d_{0}, \ldots, d_{n} are the dimensions of the set $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$.

6. Interpolation by integer-valued polynomials on Krull rings

We now turn to Krull rings and characterize those arguments $r_{1}, \ldots, r_{n} \in R$ that for every choice of values $s_{1}, \ldots, s_{n} \in R$ admit an interpolating polynomial $f \in \operatorname{Int}(R)$. We denote the set of prime ideals of height 1 in R by $\operatorname{Spec}^{1}(R)$.
6.1 Lemma. Let v be a discrete valuation on a field K. Suppose $f=\sum_{k=0}^{n} a_{k} x^{k}$ in $K[x]$ splits over K as $f(x)=a_{n}\left(x-b_{1}\right) \ldots\left(x-b_{m}\right)\left(x-c_{1}\right) \ldots\left(x-c_{l}\right)$, where $v\left(b_{i}\right)<0$ and $v\left(c_{i}\right) \geq 0$. Let $\mu=\min _{0 \leq k \leq n} v\left(a_{k}\right)$ and set $f_{+}(x)=\left(x-c_{1}\right) \ldots\left(x-c_{l}\right)$ then $v(f(r))=\mu+v\left(f_{+}(r)\right)$ for all $r \in R_{v}$.

Proof. If $r \in R_{v}, v\left(r-b_{i}\right)=v\left(b_{i}\right)$ and $v(f(r))=v\left(a_{n}\right)+\sum_{i=1}^{m} v\left(b_{i}\right)+v\left(f_{+}(r)\right)$. We will show that $\sum_{i=1}^{m} v\left(b_{i}\right)=\mu-v\left(a_{n}\right)$. Let $a_{n}^{-1} f(x)=x^{n}+a_{n-1}^{\prime} x^{n-1}+\ldots+a_{0}^{\prime}$ then $\mu-v\left(a_{n}\right)=\min _{0 \leq k \leq n} v\left(a_{k}^{\prime}\right)$ and a_{k}^{\prime} is up to sign the elementary symmetric polynomial of degree $n-k$ in the b_{i} and c_{i}, so that $\min _{0 \leq k \leq n} v\left(a_{k}^{\prime}\right)=v\left(a_{n-m}^{\prime}\right)=$ $v\left(e_{m}\left(b_{1}, \ldots, b_{m}, c_{1}, \ldots, c_{l}\right)\right)=\sum_{i=1}^{m} v\left(b_{i}\right)$.
6.2 Lemma. Let R be a domain, $r_{1}, \ldots, r_{n+1} \in R$ and $a_{j}=r_{j}-r_{n+1}(1 \leq j \leq n)$. Then there exists $f \in \operatorname{Int}(R)$ with $f\left(r_{j}\right)=0(1 \leq j \leq n)$ and $f\left(r_{n+1}\right)=1$ if and only if there exists $g \in \operatorname{Int}(R)$ with $g\left(a_{j}\right)=0(1 \leq j \leq n)$ and $g(0)=1$.

Proof. $(\Rightarrow) g(x):=f\left(x+r_{n+1}\right)(\Leftarrow) f(x):=g\left(x-r_{n+1}\right)$
6.3 Theorem. Let R be a Krull ring and let r_{1}, \ldots, r_{n+1} (distinct) $\in R$ such that $r_{i} \not \equiv r_{n+1} \bmod P(1 \leq i \leq n)$ for all $P \in \operatorname{Spec}^{1}(R)$ with $[R: P]=\infty$. Then there exists $f \in \operatorname{Int}(R)$ with $f\left(r_{i}\right)=0(1 \leq i \leq n)$ and $f\left(r_{n+1}\right)=1$.

Proof. Let $a_{j}=r_{j}-r_{n+1}$ for $1 \leq j \leq n$. The a_{j} are distinct non-zero elements of R, none of which are contained in any $P \in \operatorname{Spec}^{1}(R)$ with $[R: P]=\infty$. By Lemma 6.2, we want an $f \in \operatorname{Int}(R)$ with $f\left(a_{j}\right)=0$ for $1 \leq j \leq n$ and $f(0)=1$. We will first construct a polynomial $g \in K[x]$ with $g\left(a_{j}\right)=0$ for $1 \leq j \leq n$, such that for every essential valuation v of R and every $r \in R, v(g(r)) \geq v(g(0))$ and then set $f(x)=g(x) / g(0)$.

Let $\mathcal{P}=\left\{P \in \operatorname{Spec}^{1}(R) \mid \exists j a_{j} \in P\right\}$ then \mathcal{P} is a finite set of maximal ideals of finite index. Also let, for $P \in \mathcal{P}, m_{P}=\max \left\{m \in \mathbb{N} \mid \exists j a_{j} \in P^{m}\right\}$ and define $I=\bigcap_{P \in \mathcal{P}} P^{m_{P}}=\prod_{P \in \mathcal{P}} P^{m_{P}}$. Let $N=[R: I]$. Using the Chinese Remainder Theorem $\bmod P^{m_{P}+1}$ for $P \in \mathcal{P}$, we can get a system of representatives $\left(b_{i}\right)_{i=1}^{N}$ of $R \bmod I$ with the property that for all i and all $P \in \mathcal{P}, \quad b_{i} \notin P^{m_{P}+1}$. Note that for $P \in \mathcal{P}$ and $k \leq m_{P}$, the number of b_{i} in any given residue class of P^{k} is $N /\left[R: P^{k}\right]$, since I is an ideal contained in P^{k}. In other words,

$$
\forall r \in R \forall P \in \mathcal{P} \quad \forall k \leq m_{P} \quad\left|\left\{i \mid v_{P}\left(r-b_{i}\right) \geq k\right\}\right|=\frac{N}{\left[R: P^{k}\right]}
$$

Let $\mathcal{Q}=\left\{Q \in \operatorname{Spec}^{1}(R) \backslash \mathcal{P} \mid \exists i b_{i} \in Q\right\}$ and for $Q \in \mathcal{Q}$ let l_{Q} be the maximal $l \in \mathbb{N}$ such that $b_{i} \in Q^{l}$ for some i. Let $c \in R$ with $v_{Q}(c)=l_{Q}+1$ for all $Q \in \mathcal{Q}$, and $v_{P}(c)=0$ for all $P \in \mathcal{P}$. Also, let $\mathcal{Q}^{\prime}=\left\{Q \in \operatorname{Spec}^{1}(R) \mid v_{Q}(c)>0\right\}$, then $\mathcal{Q} \subseteq \mathcal{Q}^{\prime}$ and $\mathcal{Q}^{\prime} \cap \mathcal{P}=\emptyset$.

We set $b_{i}^{\prime}=c^{-1} b_{i}$. Then $v_{Q}\left(b_{i}^{\prime}\right)<0$ for all $Q \in \mathcal{Q}^{\prime}$ and $0 \leq v_{P}\left(b_{i}^{\prime}\right)<m_{P}+1$ for all $P \in \mathcal{P}$. If $P \in \mathcal{P}$ and $r \in R$, we have $v_{P}\left(r-b_{i}^{\prime}\right)=v_{P}\left(c^{-1}\left(c r-b_{i}\right)\right)=v_{P}\left(c r-b_{i}\right)$. Therefore, for all $r \in R$,

$$
\forall P \in \mathcal{P} \quad \forall k \leq m_{P} \quad\left|\left\{i \mid v_{P}\left(r-b_{i}^{\prime}\right) \geq k\right\}\right|=\left|\left\{i \mid v_{P}\left(c r-b_{i}\right) \geq k\right\}\right|=\frac{N}{\left[R: P^{k}\right]}
$$

and in particular $\left|\left\{i \mid v_{P}\left(b_{i}^{\prime}\right) \geq k\right\}\right|=N /\left[R: P^{k}\right]$.
Let m be the maximal number of a_{i} in any residue class of I in R and set $h(x)=\prod_{i=1}^{N}\left(x-b_{i}^{\prime}\right)^{m}$. To get a polynomial g with $g\left(a_{j}\right)=0$ for $1 \leq j \leq n$, we now replace certain roots of h with the elements a_{1}, \ldots, a_{n}. Since the b_{i} are a complete system of residues $\bmod I$ in R, there exists for every $j \in\{1, \ldots, n\}$ an i_{j} with $b_{i_{j}} \equiv c a_{j} \bmod I$.

Let $g(x)=\prod_{i=1}^{m N}\left(x-c_{i}\right)$ be the polynomial resulting from h by replacing, for each $j \in\{1, \ldots, n\}$, one copy of $b_{i_{j}}^{\prime}$ in the multiset of roots of h by a_{j}. (If $i_{j}=i_{k}$ for $k \neq j$ this means $c a_{j} \equiv c a_{k} \bmod I$ and therefore $a_{j} \equiv a_{k} \bmod I$, and by the definition of $m, b_{i_{j}}^{\prime}$ occurs with sufficient multiplicity as a root of h that every $a_{k} \in a_{j}+I$ can be exchanged for a different copy of $b_{i_{j}}^{\prime}$.) Note that for $P \in \mathcal{P}$, $0 \leq v_{P}\left(c_{i}\right)<m_{P}+1$ for all i.

We claim that for all essential valuations v of R and all $r \in R, v(g(r)) \geq v(g(0))$. First, assume $P \in \mathcal{P}$. For all $r \in R$, if $k \leq m_{P}$ then

$$
\begin{equation*}
v_{P}\left(r-b_{i_{j}}^{\prime}\right) \geq k \Longleftrightarrow v_{P}\left(r-a_{j}\right) \geq k \tag{*}
\end{equation*}
$$

(and consequently $\left|\left\{i \mid v_{P}\left(c_{i}\right) \geq k\right\}\right|=m\left|\left\{i \mid v_{P}\left(b_{i}^{\prime}\right) \geq k\right\}\right|$). This is so because $v_{P}\left(r-b_{i_{j}}^{\prime}\right)=v_{P}\left(c^{-1}\left(c r-b_{i_{j}}\right)\right)=v_{P}\left(c r-b_{i_{j}}\right)=v_{P}\left(c r-c a_{j}+d\right)$ with $d \in I$, and then $v_{P}(d) \geq m_{P} \geq k$ implies that $v_{P}\left(c r-c a_{j}+d\right) \geq k$ if and only if $v_{P}\left(r-a_{j}\right)=v_{P}\left(c r-c a_{j}\right) \geq k$. We abbreviate $\sum_{i=1}^{m_{P}} \frac{N}{\left[R: P^{k}\right]}$ by γ_{P} and get

$$
\begin{aligned}
& v_{P}(g(r))=\sum_{i=1}^{m N} v_{P}\left(r-c_{i}\right)=\sum_{k \geq 1}\left|\left\{i \mid v_{P}\left(r-c_{i}\right) \geq k\right\}\right| \geq \\
& \quad \geq \sum_{k=1}^{m_{P}}\left|\left\{i \mid v_{P}\left(r-c_{i}\right) \geq k\right\}\right| \stackrel{(*)}{=} m \sum_{k=1}^{m_{P}}\left|\left\{i \mid v_{P}\left(r-b_{i}^{\prime}\right) \geq k\right\}\right|=m \gamma_{P}
\end{aligned}
$$

while $v_{P}(g(0))=$

$$
=\sum_{k \geq 1}\left|\left\{i \mid v_{P}\left(c_{i}\right) \geq k\right\}\right|=\sum_{k=1}^{m_{P}}\left|\left\{i \mid v_{P}\left(c_{i}\right) \geq k\right\}\right| \stackrel{(*)}{=} m \sum_{k=1}^{m_{P}}\left|\left\{i \mid v_{P}\left(b_{i}^{\prime}\right) \geq k\right\}\right|=m \gamma_{P}
$$

Now consider $Q \in \mathcal{Q}^{\prime}$. For all $i, j, v_{Q}\left(b_{i}^{\prime}\right)<0$ and $v_{Q}\left(a_{j}\right)=0$. If $g(x)=\sum_{k=0}^{m N} d_{k} x^{k}$ and $\mu=\min _{1 \leq k \leq m N} v_{Q}\left(d_{k}\right)$ then for all $r \in R$ we have (using Lemma 6.1)

$$
v_{Q}(g(r))=\mu+v_{Q}\left(\prod_{j=1}^{n}\left(r-a_{j}\right)\right) \geq \mu=\mu+v_{Q}\left(\prod_{j=1}^{n} a_{j}\right)=v_{Q}(g(0))
$$

For the remaining essential valuations v of $R, v\left(c_{i}\right)=0$ for all i. Therefore, if $r \in R, v(g(r))=\sum_{i=1}^{m N} v\left(r-c_{i}\right) \geq 0=\sum_{i=1}^{m N} v\left(c_{i}\right)=v(g(0))$.

Now let $f(x)=g(x) / g(0)$. For $j=1, \ldots, n, f\left(a_{j}\right)=0$ because $g\left(a_{j}\right)=0$, and clearly $f(0)=1$. Also, $f \in \operatorname{Int}(R)$, because for all $r \in R$ and every essential valuation v of $R, v(g(r)) \geq v(g(0))$ and therefore $v(f(r)) \geq 0$.
6.4 Remark. If P is a prime ideal in a domain R with $[R: P]=\infty$ it is well known that $\operatorname{Int}\left(R, R_{P}\right)=R_{P}[x]$. Every $f \in \operatorname{Int}\left(R, R_{P}\right)$ of degree n is determined by its values at $n+1$ arguments $a_{0}, \ldots, a_{n} \in R$ and is therefore equal to the Lagrange interpolation polynomial

$$
\varphi(x)=\sum_{i=0}^{n} f\left(a_{i}\right) \frac{\prod_{j \neq i}\left(x-a_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)} .
$$

If the a_{i} are chosen pairwise incongruent $\bmod P$, then $\varphi(x)$ is clearly in $R_{P}[x]$.
6.5 Corollary. Let r_{1}, \ldots, r_{n} be distinct elements of a Krull ring R. If and only if the r_{i} are pairwise incongruent mod all $P \in \operatorname{Spec}^{1}(R)$ with $[R: P]=\infty$ there exists for all $s_{1}, \ldots, s_{n} \in R$ an $f \in \operatorname{Int}(R)$ with $f\left(r_{i}\right)=s_{i}$ for $1 \leq i \leq n$.

Proof. The "if" part follows from the Theorem, since R-linear combinations of polynomials in $\operatorname{Int}(R)$ are again in $\operatorname{Int}(R)$. Conversely, if $a, a^{\prime} \in R$ are congruent
$\bmod P \in \operatorname{Spec}^{1}(R)$ with $[R: P]=\infty$ then there is no $f \in \operatorname{Int}\left(R, R_{P}\right)$ with $f(a)=0$ and $f\left(a^{\prime}\right)=1$, since $f(a) \equiv f\left(a^{\prime}\right) \bmod P$ for all $f \in \operatorname{Int}\left(R, R_{P}\right) \supseteq \operatorname{Int}(R)$, by Lemma 5.2 (or by the fact that $\operatorname{Int}\left(R, R_{P}\right)=R_{P}[x]$, see 6.4).

References

1. Y. Amice, Interpolation p-adique, Bull. Soc. Math. France 92 (1964) 117-180.
2. P.-J. Cahen, Integer-valued polynomials on a subset, Proc. Amer. Math. Soc. 117 (1993), 919-929.
3. P.-J. Cahen, Polynômes à valeurs entières, Canad. J. Math. 24 (1972), 747-754.
4. P.-J. Cahen and J.-L. Chabert, Integer-Valued Polynomials (Mathematical Surveys and Monographs vol. 48), Amer. Math. Soc., Providence RI, 1997.
5. L. Carlitz, Finite sums and interpolation formulas over GF $\left[p^{n}, x\right]$, Duke Math. J. 15 (1948) 1001-1012.
6. J.-L. Chabert, Le groupe de Picard de l'anneau des polynômes à valeurs entières, J. Algebra 150 (1992), 213-230.
7. S. Frisch, Integer-valued polynomials on Krull Rings, Proc. Amer. Math. Soc. 124(12) (1996), 3595-3604.
8. S. Frisch, Binomial Coefficients Generalized with respect to a Discrete Valuation, to appear in Proc. of $7^{\text {th }}$ Int'l Conf. on Fibonacci Numbers and Their Applications in Graz, Austria, 1996, G. E. Bergum, ed.
9. R. Gilmer, W. Heinzer and D. Lantz, The Noetherian property in rings of integer-valued polynomials, Trans. Amer. Math. Soc. 338 (1993), 187-199.
10. H. Gunji and D. L. McQuillan, On a class of ideals in an algebraic number field, J. Number Theory 2 (1970), 207-222.
11. E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. reine angew. Math. 44 (1852), 93-146.
12. D. L. McQuillan, On Prüfer domains of polynomials, J. reine angew. Math. 358 (1985), 162-178.
13. D. L. McQuillan, Split primes and integer-valued polynomials, J. Number Theory 43 (1993), 216-219.
14. A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math. 149 (1919), 117-124.
15. G. Pólya, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math. 149 (1919), 97-116.
16. C. G. Wagner, Interpolation series for continuous functions on π-adic completions of GF (q, x), Acta Arith. 17 (1971), 389-406.

Institut für Mathematik C
Technische Universität Graz
Steyrergasse 30

A-8010 Graz, Austria
e-mail: frisch@blah.math.tu-graz.ac.at

