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BINOMIAL COEFFICIENTS GENERALIZED

WITH RESPECT TO A DISCRETE VALUATION

Sophie Frisch

1. Introduction. There is a fine Theorem of Kummer on the power to which a prime
appears in the prime factorization of a binomial coefficient:

Theorem. (Kummer [10]) If p is a prime, then the exact power of p dividing the binomial

coefficient
(
n
k

)
is equal to the number of carries that occur in the addition of k and n− k

in base p arithmetic.

One objective of this paper is to show an analogue of this result for a certain generalization
of the binomial coefficients that arises naturally in the study of integer-valued polynomials.
Recall that a polynomial with coefficients in the quotient field K of an integral domain D

is called integer-valued if f(d) ∈ D for all d ∈ D. The starting point of this generalization
is the following well known fact.

Fact 1. (folklore) Let (x)n = x(x−1) . . . (x−n+1), (x)0 = 1. The binomial polynomials(
x

n

)
=

(x)n

n!
(n ∈ N0)

form a basis of the free Z-module Int(Z) = {f ∈ Q[x] | f(Z) ⊆ Z}.

To be able to generalize the falling factorials (x)n = x(x − 1) . . . (x − n + 1), we need a
sequence with nice distribution properties with respect to a discrete valuation to take the
place of the sequence of natural numbers.

Before we make this precise, we state the second objective of this paper, namely to
show that in certain cases, in particular when R is the ring of algebraic integers in a
number field, these sequences can be chosen to enumerate R bijectively. For this, we
introduce Z-bases with special properties with respect to a prime p ∈ Z for the ring of
algebraic integers in a number field in section 5.

2. Definitions. Integer-valued polynomials are much studied objects; we mention only
the seminal work by Pólya [16] and Ostrowski [15], and, as more recent examples, the
papers by Cahen [1, 2], Chabert [3], McQuillan [13, 14] and Gilmer, Heinzer and Lantz
[6]. We use the common notation of Int(R,D) for {f ∈ K[x] | f(R) ⊆ D}, where R is
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a subset of the quotient field K of an integral domain D, and Int(D) for Int(D,D). The
technique of constructing integer-valued polynomials by replacing the natural numbers in
the definition of the binomial polynomials by a specially chosen sequence of ring elements
goes back to Pólya [16].
We first define sequences in arbitrary commutative rings. (We will specialize to discrete
valuation rings later.) All (finite or infinite) sequences are indexed by an initial segment
N of N = {1, 2, . . .} or N0 = {0, 1, 2, . . .} and quantifiers over indices of such a sequence
are always assumed to range over precisely the index-set.

Definition. For a set I of ideals in a commutative ring R we define an I-sequence in R

to be a sequence (an) of elements in R with the property

∀I ∈ I ∀n, m
(
an ≡ am mod I ⇐⇒ [R : I]

∣∣ n−m
)
.

(Any infinite [R:I] we regard as dividing 0, but no other integer.) We define a homogeneous
I-sequence to be one with the additional property

∀I ∈ I ∀n ≥ 1
(
an ∈ I ⇐⇒ [R : I]

∣∣ n
)
.

Note that every I-sequence with a0 = 0 is homogeneous. Also note that a sequence in R

is an I-sequence if and only if every [R : I] consecutive elements form a complete system
of residues mod I for every I ∈ I of finite index, and the elements of the sequence are
pairwise incongruent modulo every I ∈ I of infinite index.

It is not hard to see [4, Proposition 2.1] that I-sequences exist for every descending
chain of ideals I = {In |n ∈ N}, In+1 ⊆ In, in a commutative ring R. We can therefore
count on having an I-sequence with respect to the set I of all ideals of R, whenever it
forms a descending chain. This is our motivation for turning to discrete valuation rings.

Recall that a discrete valuation on a field K is a function v from K \ {0} onto Z
(supplemented by the convention v(0) = ∞) satisfying v(ab) = v(a) + v(b) and v(a + b) ≥
min(v(a), v(b)). A discrete valuation ring is a ring Rv = {a ∈ K | v(a) ≥ 0}, where v is a
discrete valuation on K. It is a local ring with maximal ideal Mv = {a ∈ K | v(a) > 0}
(see, e.g. [12]).

For an important class of rings including all Dedekind rings and all unique factorization
domains, R is the intersection of a family of discrete valuation rings in its quotient
field, R =

⋂
v∈V Rv. For Dedekind rings, the relevant discrete valuation rings are the

localizations at maximal ideals, for UFDs the localizations at principal prime ideals. One
can then study Int(R) =

⋂
v∈V Int(R,Rv) by first considering each Int(R,Rv) individually,

which we will do here, and then combining the information to obtain results on Int(R),
which we will omit, since the combinatorial properties we are interested in only appear in
Int(R,Rv).

If R is an infinite subring of a discrete valuation ring, there is a straightforward
generalization (defined below) of the binomial polynomials. They form a basis of the
Rv-module Int(R,Rv) (cf. [4], Theorem 2.8).

Definition. If R is an infinite subring of a discrete valuation ring Rv, we define a v-
sequence for R to be an I-sequence with I = {Mv

n ∩ R | n ∈ N}. In other words,
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(an)n∈N ⊆ R is a v-sequence for R if and only if for all n ∈ N and all i, j ∈ N ,

v(ai − aj) ≥ n ⇐⇒ [R : Mv
n ∩R]

∣∣ i− j .

If [R :Mv
n∩R] is infinite, the elements of a v-sequence must be pairwise incongruent mod

Mv
n ∩R.

Notation. From now on, Rv will be a discrete valuation ring (with value group Z and

v(0) = ∞), Mv its maximal ideal, K its quotient field and R (unless otherwise specified)

an infinite subring of Rv. For brevity, we write Pn for Mv
n ∩R, from this point on.

Note that since R is infinite and by the Krull Intersection Theorem
⋂∞

n=0 Pn = (0), the
indices [R : Pn] grow arbitrarily large or are infinite from some n on.

Definition. The falling factorials with respect to a v-sequence (an)n≥0 are

〈x〉n = (x− a0)(x− a1) . . . (x− an−1)

and the binomial polynomials constructed from the v-sequence (an)n≥0 are

b0 = 1 and bn(x) =
〈x〉n
〈an〉n

for n > 0.

These binomial polynomials were introduced in [4]. They generalize a construction of
Pólya [16] that has also been employed by Cahen [2], Gunji and McQuillan [7, 13] and
others.

If R = Z, p is a prime and vp is p-adic valuation, then the classical vp-sequence for Z
is an = n. The corresponding binomial polynomials are bk(x) =

(
x
k

)
, and bk(an) =

(
n
k

)
.

Therefore, if (an) is a v-sequence and bk is the binomial polynomial of degree k constructed
from it, we may regard bk(an) as a generalization of

(
n
k

)
.

3. A carry theorem. As before, R is an infinite subring of a discrete valuation ring Rv

and Pn = Mv
n ∩R. For j, k ∈ N0, let rj(k) be the remainder of k under integral division

by [R : Pj ] if [R : Pj ] is finite, and rj(k) = k if [R : Pj ] is infinite.

Lemma 1. Let (an)N
n=0 be a v-sequence for R and (bn)N

n=0 the binomial polynomials

constructed from it. Then for all r ∈ R and all k = 0, . . . , N ,

v
(
bk(r)

)
=
∣∣{j ≥ 1 | for some l < rj(k), r ≡ al mod Pj}

∣∣
and, in particular, bk ∈ Int(R,Rv).

Proof. v
(
bk(r)

)
= v
(
〈r〉k

)
− v
(
〈ak〉k

)
. For any s ∈ R, v

(
〈s〉k

)
=
∑k−1

i=0 v(s− ai), so

v
(
〈s〉k

)
=
∑
j≥1

∣∣{i | 0 ≤ i < k, v(s− ai) ≥ j}
∣∣ =∑

j≥1

∣∣{i | 0 ≤ i < k, s ≡ ai mod Pj}
∣∣.

Since every [R:Pj ] consecutive terms of a v-sequence form a complete set of representatives

mod Pj ,
∣∣{i | 0 ≤ i < k, s ≡ ai mod Pj}

∣∣ is either
[

k
[R:Pj ]

]
or
[

k
[R:Pj ]

]
+ 1. The extra “1”

appears for each j such that s ≡ ai mod Pj for some i with 0 ≤ i < rj(k), and never
appears at all if s = ak. �
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We now introduce the number system associated to the valuation v that will appear in
our generalization of Kummer’s theorem. We call it v-ary number system but note that it
depends not only on v, but also on the subring R of Rv. It is the Cantor (or mixed-radix)
number system to the basis bn = [R : Pn], 0 ≤ n < ∞, cf. [8] 192 ff. Since the indices
[R :Pn] either grow arbitrarily large while remaining finite (the non-degenerate case of our
number system) or are finite at first, at least for P0 = R, and infinite from some n on (the
degenerate case), every n ∈ N0 has a unique representation n =

∑∞
l=0 εl(n)[R : Pl], with

0 ≤ εl(n) < [Pl : Pl+1]. (We use the convention that 0 · [R : Pl] = 0 even if [R : Pl] = ∞.)

Definition. If n =
∑∞

l=0 εl(n)[R : Pl], where 0 ≤ εl(n) < [Pl : Pl+1], we call εl(n) the

l-th digit of n in the v-ary number system. Addition of numbers in v-ary arithmetic is

performed by addition with carry on the vectors of digits, where a carry from position l

to position l + 1 occurs when the l-th digit reaches or exceeds [Pl : Pl+1].

If [Rv : Mv] is finite, then [Pl : Pl+1] divides [Mv
l : Mv

l+1] = [Rv : Mv]; if Rv/Mv is infinite,
however, the digits need not be uniformly bounded or bounded at all. In the degenerate
case, if N is maximal with [R : PN ] finite, the N -th digit may be arbitrarily large, while
for all l > N , εl(n) = 0 for all n.

If n =
∑∞

l=0 εl(n)[R :Pl], we set rj(n) =
∑j−1

l=0 εl(n)[R :Pl]. This is consistent with our
earlier use of rj(n) as the remainder of n under integral division by [R : Pj ], if [R : Pj ] is
finite, and n otherwise.

Theorem 1. Let (ai)n
i=0 be a v-sequence for R and for 0 ≤ k ≤ n let bk be the binomial

polynomial of degree k constructed from it. Then

(a) v
(
bk(an)

)
=
∣∣{l ≥ 1 | rl(k) > rl(n)}

∣∣,
(b) v

(
bk(an)

)
is the number of carries occurring in the addition of k and n − k in v-ary

arithmetic,

(c) v
(
bk(an)

)
= 0 ⇐⇒ ∀ l εl(k) ≤ εl(n) in the v-ary number system.

Proof. The condition an ≡ ai mod Pl with 0 ≤ i < rl(k) is equivalent to rl(n) < rl(k),
such that (a) follows from Lemma 1. For all l, either rl(k) + rl(n − k) = rl(n), in which
case no carry occurs at the l-th digit in the addition of k and n− k, or rl(k) + rl(n− k) =
[R : Pl+1] + rl(n), in which case a carry does occur. In the first case, rl(k) ≤ rl(n); in the
second case, rl(k) > rl(n) since rl(n − k) < [R : Pl+1]. Thus (b) follows from (a). Since
∀ l εl(k) ≤ εl(n) is clearly the criterion for no carry to occur, (c) follows from (b). �

Note that Theorem 1 (b) implies v(bk(an)) = v(bn−k(an)) for all k ≤ n.
In the case where R = Z, v = vp and an = n, we retrieve Kummer’s theorem that

vp(
(
n
k

)
) is equal to the number of l ≥ 1 such that the remainder of k mod pl is strictly

greater than the remainder of n mod pl, which number is also equal to the number of
carries in the addition of k and n − k in base p arithmetic [10; pp 115–119]. For an
account of related facts about the classical binomial coefficients, see [17], for a different
generalization, [9]. There is another version of Kummer’s theorem that also carries over
to generalized binomial coefficients in some cases.
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Variant of Kummer’s Theorem. Let p be a prime, and 0 ≤ k ≤ n. Then

vp

((
n

k

))
=

1
p− 1

∑
l≥0

εl(k) + εl(n− k)− εl(n),

where εl(j) means the l-th digit of j in base p.

We look at falling factorials: If (ai)N
i=0 is a v-sequence and αi = aN − aN−i, i = 0, . . . , N ,

then (αi)N
i=0 is a v-sequence with α0 = 0, and therefore homogeneous. Let (αi)N

i=0 be
a homogeneous v-sequence and n ≤ N , then α1 . . . αn is a v-analogue of n!, since, for
n =

∑m
l=0 εl(n)[R : Pl]

v(α1 . . . αn) =
m∑

j=1

[
n

[R : Pj ]

]
=

m∑
j=1

m∑
l=j

εl(n)[Pj : Pl] =
m∑

l=1

εl(n)
l∑

j=1

[Pj : Pl].

If [Pj :Pj+1] = q for all j (for instance, if Rv is the localization of R at a maximal ideal
of finite index) this further simplifies to

m∑
l=1

εl(n)
(ql − 1)
q − 1

=
1

q − 1

(
m∑

l=1

εl(n)ql −
m∑

l=1

εl(n)

)
=

1
q − 1

(
n−

m∑
l=0

εl(n)

)
,

and we can generalize the above variant of Kummer’s theorem:

Theorem 2. Let (ai)n
i=0 be a v-sequence for R and for 0 ≤ k ≤ n let bk be the binomial

polynomial of degree k constructed from it. If [Pl : Pl+1] = q for all l ≥ 0 then

v(bk(an)) =
1

q − 1

∑
l≥0

εl(k) + εl(n− k)− εl(n) ,

where εl(j) denotes the l-th digit of j in base q.

Proof. This follows from the preceding calculations, since bk(an) =

=
∏n−1

i=0 (an − ai)∏k−1
i=0 (ak − ai)

∏n−1
i=k (an − ai)

=
∏n

i=1(an − an−i)∏k
i=1(ak − ak−i)

∏n−k
i=1 (an − an−i)

,

and αi = an − an−i (0 ≤ i ≤ n), βi = ak − ak−i (0 ≤ i ≤ k) and γi = an − an−i

(0 ≤ i ≤ n− k) are v-sequences, and homogeneous ones, since α0 = β0 = γ0 = 0. �

4. Enumerating R Bijectively as an I-Sequence. It is often possible to arrange all of
R bijectively as a v-sequence. This has applications to interpolation by integer-valued
polynomials.
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Theorem 3. If R is a countably infinite ring and I = {In |n ∈ N} a descending chain

of ideals of finite index in R with
⋂

n∈N In = (0) then there exists an I-sequence which

enumerates R bijectively.

Proof. Consider the elements of R labeled by natural numbers. (Such a label will be
called the “number” of an element, not to be confused with the index at which it occurs
in the sequence.) As the first step of constructing our sequence, we put a0 = 0 and assign
the different residue classes of I1 other than I1 itself to the indices i = 1, . . . , [R : I1]− 1 in
any order. We then define ai to be the element with the smallest number in the residue
class of I1 assigned to i.

Assuming a0, . . . , a[R:In−1]−1 already defined, we define a[R:In−1], . . . , a[R:In]−1 as fol-
lows. For 0 ≤ i ≤ [R : In−1]− 1, assign the residue classes of In contained in ai + In−1 but
different from ai +In to the [In−1 :In]−1 indices i+j[R :In−1] with 0 < j ≤ [In−1 :In]−1;
then for k = [R : In−1], . . . , [R : In] − 1, define ak to be the element with the smallest
number in the residue class of In assigned to index k.

This procedure inductively defines an I-sequence with the property that every sequence
element ai with i < [R : In] is the element of lowest number in its residue class mod In.
Since every [R : In] consecutive sequence elements form a complete set of representatives
mod In, every element of smallest number in its residue class mod In occurs among
a0, . . . , a[R:In]−1.⋂

I∈I I = (0) together with R being infinite implies that every I-sequence is injective.
Given r ∈ R, we show that it appears in the sequence: Since

⋂
n∈N In = (0), there exists

N ∈ N, such that r is not congruent mod IN to any element of smaller number. r is
therefore the element of smallest number in its residue class mod IN , and will appear
among the first [R : IN ] sequence elements. �

Theorem 3 implies that every countably infinite subring R of a discrete valuation ring
Rv can be arranged as a v-sequence, on condition that all intersections of powers of Mv

with R are of finite index in R. For the application to interpolation, we use the fact that
every function from the set A = {ai | i ≥ 0} enumerated by a v-sequence (ai)∞i=0 to Rv

can be represented as an infinite Rv-linear combination of the binomial polynomials bn

constructed from the sequence. (This infinite linear combination reduces to a finite sum
upon evaluation at ai, since bn(ai) = 0 for all n > i.)

Fact 2. Let R be an infinite subring of a discrete valuation ring Rv, (ai)∞i=0 a v-sequence

for R, A = {ai | i ≥ 0} and

b0 = 1 and bn(x) =
∏n−1

i=0 (x− ai)∏n−1
i=0 (an − ai)

for n > 0

the binomial polynomials constructed from the sequence. Then every function f :A → Rv

has a unique representation f(x) =
∑∞

i=0 dibi(x) with di ∈ Rv.

Proof. From Lemma 1 we know that the bn are in Int(R,Rv). By the definition of the
binomial polynomials, bn(an) = 1 and bn(ai) = 0 for n > i.
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Every infinite Rv-linear combination of the bi, f =
∑∞

i=0 dibi, represents a function
f :A → Rv, since it reduces to the finite sum f(an) = dn +

∑n−1
i=0 dibi(an) upon evaluation

at an and the bi are in Int(R,Rv).
Conversely, given a function f :A → Rv, we can define coefficients di ∈ Rv inductively

by d0 = f(a0) and dn = f(an) −
∑n−1

i=0 dibi(an), and find that
∑∞

i=0 dibi represents the
function f . �

We can now give a short proof of the possibility of interpolation by integer-valued
polynomials on a discrete valuation ring. (A more involved proof, which, however, has the
advantage of determining, for each set of arguments in R, the minimal d such that there
exists an interpolating polynomial of degree at most d for every choice of values in Rv,
will appear in [5].)

Corollary to Theorem 3. Let R be a countably infinite subring of a discrete valuation

ring Rv with the property that for all n, Pn = Mn
v ∩ R is of finite index in R. Then

for all r1, . . . , rm (distinct) in R and all s1, . . . , sm ∈ Rv there exists f ∈ Int(R,Rv) with

f(rj) = sj for 1 ≤ j ≤ m.

Proof. By the Krull Intersection Theorem,
⋂∞

k=0 Pk = (0). Therefore there exists n ∈ N
such that r1, . . . , rm are pairwise incongruent mod Pn. We show that r1, . . . , rm can be
embedded in a v-sequence as elements of index < [R:Pn]. In the proof of Theorem 3, choose
the initial numbering of the elements of R in such a way that rj is element number j; each rj

is then the element of smallest number in its residue class mod Pn and will therefore occur
among the first N = [R : Pn] elements of the v-sequence (ai)∞i=0 so constructed. Now let
bk be the binomial polynomial of degree k constructed from (ai)∞i=0. Let A = {ai | i ≥ 0}.
If we consider any function ϕ:A → Rv satisfying ϕ(rj) = sj for 1 ≤ j ≤ m, it has a
representation as

∑∞
i=0 dibi with di ∈ Rv by Fact 2. Since bk(ai) = 0 for k > i, the values

ϕ(ai) for i < N , and in particular ϕ(rj) for 1 ≤ j ≤ m, are determined by d0, . . . , dN−1.
Therefore we can set f =

∑N−1
i=0 dibi and still have f(rj) = sj for 1 ≤ j ≤ m. As an

Rv-linear combination of the bi ∈ Int(R,Rv), f is in Int(R,Rv). �

5. Explicit Construction for the Ring of Algebraic Integers in a Number Field. In
some cases there is an explicit and natural bijective arrangement of R as a v-sequence, for
instance, when R is the ring of algebraic integers in a number field K, p ∈ Z a prime such
that only one prime ideal P of R lies above p, and Rv is the localization RP of R at P .
Since the intersections of the powers of the valuation ideal with R are just the powers of
P , we need to construct an I-sequence for I = {Pn |n ∈ N} that enumerates R bijectively.
We first show the existence of an integral basis of R having special properties with respect
to a prime p. (For definitions of the notions related to the splitting of primes in number
fields see [11]).

If pR = P e with [R : P ] = pf and ω1, . . . , ωn is a Z-basis of R, then

R = Zω1 + . . . + Zωn and P e = pR = pZω1 + . . . + pZωn,

but whether an element of R belongs to P k for 0 < k < n is not readily seen from the
coefficients in its representation as a Z-linear combination of the ωi. There are, however,
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Z-bases of R with the property that

P k = pZω1 + . . . + pZωkf + Zωkf+1 + . . . + Zωn.

More generally, we will show in Lemma 2 that if pR = P e1
1 · . . . · P er

r , and fi denotes the
inertial degree of Pi | p, there is a Z-basis of R such that for 1 ≤ i ≤ r and 0 ≤ k ≤ ei,

P k
i = Zω

(1)
1 + . . . + Zω

(1)
e1f1

+ . . .

+pZω
(i)
1 + . . . + pZω

(i)
kfi

+ Zω
(i)
kfi+1 + . . . + Zω

(i)
eifi

+ . . .

+Zω
(r)
1 + . . . + Zω

(r)
erfr

.

Lemma 2. Let K be an algebraic number field with [K : Q] = n, R the ring of algebraic

integers in K, and p ∈ Z a prime that splits in R as pR = P e1
1 · . . . ·P er

r with [R :Pi] = pfi .

Then there exists a Z-basis of R consisting of blocks ω
(i)
1 , . . . , ω

(i)
eifi

, 1 ≤ i ≤ r, such that

for all s ∈ R, where

s = m
(1)
1 ω

(1)
1 + . . . + m

(1)
e1f1

ω
(1)
e1f1

+ . . . . . . + m
(r)
1 ω

(r)
1 + . . . + m

(r)
erfr

ω
(r)
erfr

with m
(i)
j ∈ Z, we have, for 1 ≤ i ≤ r and 1 ≤ k ≤ ei,

s ∈ P k
i ⇐⇒ p

∣∣ m
(i)
j for 1 ≤ j ≤ kfi .

Proof. For 1 ≤ i ≤ r, let V (i) = R/P ei
i and V = V (1) × . . . × V (r). Also let

π:R → R/pR be the canonical projection, ϕ:R/pR → V the isomorphism of rings
ϕ(s + pR) = (s + P e1

1 , . . . , s + P er
r ), and ρi:V → V (i) the projection of V onto the direct

factor V (i). Then the composition ρiϕπ equals the canonical projection πi:R → R/P ei
i ,

πi(s) = s + P ei
i .

R π
−→ R

/
pR ϕ

−→ R
/
P e1

1 × . . .×R
/
P er

r
ρi

−→ R
/
P ei

i

s 7−→ s + pR 7−→ (s + P e1
1 , . . . , s + P er

r ) 7−→ s + P ei
i

In V (i) the images πi(P k
i ) = V

(i)
k , for 0 ≤ k ≤ ei, form a chain of ideals with V

(i)
0 = V (i),

V
(i)
ei = (0) and [V (i)

k :V (i)
k+1] = pfi . If we consider them as a chain of subspaces of the Z/pZ

vector space V (i), then dim(V (i)
k ) = (ei − k)fi. By repeated basis completion, we get a

Z/pZ-basis for V (i) with the property that for k = 0, . . . , ei the last (ei−k)fi basis elements
form a basis of V

(i)
k ; so that v ∈ V (i) is in V

(i)
k if and only if the first k · fi coefficients are

zero in the representation of v as a Zp-linear combination of the basis elements.
Through the canonical embeddings of the direct factors we get a basis B of the Z/pZ

vector space V that consists of r blocks, the i-th of which is a basis of V (i), and such that
v ∈ V is in ρ−1

i (V (i)
k ) if and only if the first k · fi coordinates in the i-th block are zero in

the representation of v with respect to basis B.
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For 0 ≤ k ≤ ei, an element s ∈ R is in P k
i if and only if ϕπ(s) ∈ ρ−1

i (V (i)
k ). Also, every

Z-basis Ω of R maps to a Z/pZ-basis C of V under ϕπ, and the coordinates of ϕπ(s) with
respect to C are just the coordinates of s with respect to Ω reduced mod p.

Therefore, if we can find a Z-basis of R that maps to B under ϕπ, it will have the desired
property. Let Ω be any Z-basis of R and C its image under ϕπ. We may assume that the
determinant of the basis transformation T̄ of V that maps C to B is 1. (If not, multiply an
element of B by the appropriate unit in Z/pZ; this does not affect the subspaces spanned
by the blocks of B.) Since reduction mod p is surjective SL(Z, n) → SL(Z/pZ, n) (see
remark below), we can lift this basis transformation to T ∈ SL(Z, n), apply T to Ω and
get a Z-basis for R that maps to B under ϕπ, as desired. �

Remark. The easiest way to see that reduction of matrix entries mod p is surjective
SL(Z, n) → SL(Z/pZ, n) (I thank Paul Gerardin for pointing this out), is to observe that
every matrix in SL(Z/pZ, n) is a product of elementary matrices (i.e., matrices with only 1s
in the diagonal and only one non-zero off-diagonal entry) which can be lifted individually
to elementary matrices over Z whose product is the desired lifting to SL(Z, n).

Theorem 4. Let [K : Q] = n, R the ring of integers in K, and p ∈ Z a prime with

pR = P e, [R : P ] = pf , ef = n. Let ω0, . . . , ωn−1 be a Z-basis of R with the property that

P k = pZω0 + . . . + pZωkf−1 + Zωkf + . . . + Zωn−1 for 0 ≤ k ≤ e.

For 0 ≤ m < pn, with m =
∑n−1

j=0 mjp
j (0 ≤ mj < p), define β(m) =

∑n−1
j=0 mjωj ,

and for l ∈ N0 with l =
∑

j≥0 lj pnj (0 ≤ lj < pn) let α(l) =
∑

j≥0 β(lj)(−p)j .

Then

(a) α: N0 → R is bijective,

(b) α(l) ∈ PN ⇐⇒ [R : PN ]
∣∣ l,

(c) α(l)− α(l′) ∈ PN ⇐⇒ [R : PN ]
∣∣ l − l′.

Proof. First note that for 0 ≤ k ≤ e we have β(m) ∈ P k if and only if mj = 0 for
0 ≤ j < kf , that is if and only if pkf divides m. Also for 0 ≤ k ≤ e, β(m)− β(m′) ∈ P k

if and only if mj = m′
j for 0 ≤ j < kf , that is if and only if m ≡ m′ mod pkf .

Ad (b). α(l) ∈ PN , where N = ke+ r with 0 ≤ r < e, if and only if β(lj) = 0 for j < k

and β(lk) ∈ P r, that is if and only if lj = 0 for j < k and prf divides lk, or equivalently,
pkn+rf divides l. Since ef = n, and therefore pkn+rf = pf(ke+r) = [R : P ke+r] = [R : PN ],
we are done.

Ad (c). Similarly, α(l) − α(l′) ∈ P ke+r if and only if β(l) = β(l′) for j < k and
β(lk) ≡ β(l′k) mod P r. This is equivalent to lj = l′j for j < l and lk ≡ l′k mod prf , which
is the case if and only if l ≡ l′ mod pkn+rf = [R : P ke+r].

Ad (a). Being a P -sequence, α is injective. To show surjectivity, we use the fact
that every m ∈ Z has a representation m =

∑
j≥0 mj(−p)j with 0 ≤ mj < p, only

finitely many mj 6= 0. Given a ∈ R, a = a0ω0 + . . . + an−1ωn−1, with ak ∈ Z, ak =∑
j≥0 a

(k)
j (−p)j , 0 ≤ a

(k)
j < p, let l =

∑
j≥0

(∑n−1
k=0 a

(k)
j pk

)
pnj , then lj =

∑
a
(k)
j pk for

9



binomial coefficients

j ≥ 0, so β(lj) =
∑n−1

k=0 a
(k)
j ωk, and α(l) =

∑
j≥0 β(lj)(−p)j =

∑
j≥0

∑n−1
k=0 a

(k)
j ωk(−p)j =∑n−1

k=0

(∑
j≥0 a

(k)
j (−p)j

)
ωk = a. �
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