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Sophie Frisch

Abstract.

Let R be a domain and K its quotient-field. For a subset S of K , let FR(S) be the set
of polynomials f ∈ K[x] with f(S) ⊆ R and define the R -closure of S as the set of those
t ∈ K for which f(t) ∈ R for all f ∈ FR(S). The concept of R -closure was introduced
by McQuillan (J. Number Theory 39 (1991), 245–250), who gave a description in terms
of closure in P -adic topology, when R is a Dedekind ring with finite residue fields. We
introduce a toplogy related to, but weaker than P -adic topology, which allows us to treat
ideals of infinite index, and derive a characterization of R -closure when R is a Krull ring.
This gives us a criterion for FR(S) = FR(T ), where S and T are subsets of K . As a
corollary we get a generalization to Krull rings of R. Gilmer’s result (J. Number Theory
33 (1989), 95–100) characterizing those subsets S of a Dedekind ring with finite residue
fields for which FR(S) = FR(R).

1. Introduction.

Let R be a domain and K its quotient-field. The ring of integer-valued polynomials on R

consists of those polynomials in K[x] that map R to itself, when acting as a function on
K by substitution of the variable. (The name stems from the classical case, where R is
the ring of integers in a number field.) Although this ring has been the object of extensive
study (originating with two seminal papers by Pólya [5] and Ostrowski [4]), some natural
questions have not been considered until fairly recently. If, for a subset S of K , we denote
by FR(S) the set of R-valued polynomials on S , FR(S) = {f ∈ K[x] | f(S) ⊆ R} , a
question one may ask is which subsets of R can be substituted for R to define the ring
of integer-valued polynomials, FR(S) = FR(R). R. Gilmer [1] characterized those subsets
for a Dedekind ring with finite residue fields.

To investigate when FR(S) = FR(T ), for arbitrary S, T ⊆ K , D. L. McQuillan [3]
introduced the R -closure of a set, R−cl(S) = {t ∈ K | ∀f ∈ FR(S) f(t) ∈ R} . Clearly,
FR(S) ⊆ FR(T ) if and only if T ⊆ R−cl(S). For a Dedekind ring with finite residue fields
McQuillan gave a description of the R -closure in terms of the closures in P -adic topology,
where P runs through the maximal ideals of R .
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In this paper we introduce a topology related to, but weaker than P -adic topology,
which allows us to handle prime ideals of infinite index. When R is a Dedekind ring (or
more generally a Krull ring), we give a characterization of the R -closure of sets in terms
of “weak P -adic topology.” As a corollary we get a generalization of Gilmer’s result to
Krull rings.

2. Weak I-adic topology.

All rings considered will be commutative with identity. A descending chain of ideals in a
ring R is understood to be a sequence I = {In | n ∈ N} of ideals with In+1 ⊆ In and we
set I0 := R . (The natural numbers N do not contain 0, but N0 = N ∪ {0} .)

Definition. Let R be a ring, I a descending chain of ideals in R and M an
R -module. We define weak I-adic topology on M by giving a neighborhood basis for
m ∈M : U(m) =

⋃∞
n=1 Un(m), where Un(m) consists of all sets M \

⋃n
j=1Ej , such that

each Ej is contained in m+ Ij−1M and is a finite union of residue classes of IjM , other
than m+ IjM , in M . (Thus Un(m) = {m+ U | U ∈ Un(0)} .)

Definition. If I is an ideal of R , weak I -adic topology is defined as weak I-adic
topology for I = {In | n ∈ N} .

To see that the neighborhood bases U(m) define a topology on M we check that
(1) ∀ U ∈ Un(m) m+ InM ⊆ U , in particular, m ∈ U ,
(2) U, V ∈ Un(m) =⇒ U ∩ V ∈ Un(m),
(3) ∀z ∈ U ∈ Un(m) ∃V ∈ Un(z) V ⊆ U .

Ad (3): If z ≡ m mod InM then Un(z) = Un(m). If l < n is maximal such that
z ≡ m mod IlM and U = M \

⋃n
j=1Ej , each Ej being a finite union of residue classes

other than m+ IjM in m+ Ij−1M , then V = M \
(⋃l+1

j=1Ej ∪ (m+ Il+1M)
)
⊆ U and

V ∈ Ul+1(z) ⊆ Un(z).

Remarks. (3) shows that basis neighborhoods are open and (1) implies that weak
I -adic topology is actually weaker than I -adic topology.

Perhaps a more natural way to look at weak I-adic topology on a ring R is the
following: If

⋂∞
n=1 In = (0) then there is an embedding ι of R (otherwise of R

/ ⋂∞
n=1 In )

into
∏∞

n=1 In−1/In (for n ∈ N let {cj(n) | 0 ≤ j < [In−1 : In]} be a residue system of
In−1 mod In and for r ∈ R define ι(r) :=

(
cjn(r)

(n)
)∞
n=1

by r ≡
∑N

n=1 cjn(r)
(n) mod IN

for all N ∈ N). Weak I-adic topology is then induced on R by the product topology
of co-finite topology on each factor In−1/In . If, for an ideal I in R , we compare I -adic
topology to weak I -adic topology, we see that the former is induced by product topology of
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discrete topology on
∏∞

n=1 I
n−1/In , and thus is stronger than the latter, and that equality

holds if and only if [In−1 : In] is finite for all n ∈ N .

3. Local investigations.

Throughout the “local” section, v is a discrete valuation (with value group equal to Z
and v(0) = ∞) on a field K and Rv its valuation ring with maximal ideal Mv . If S is
a set contained in Rv we denote the closure of S in weak Mv -adic topology by S . We
shall see that weak Mv -adic topology on Rv arises naturally as “topology of closure under
integer-valued polynomials,” in that S = Rv−cl(S). We need a few technical Lemmata.

Lemma 1. Let R be a subring of a ring R′ , and I , J descending chains of ideals
in R and R′ , respectively. If there exists a strictly increasing function ϕ : N → N with
ϕ(1) = 1 such that for all n ∈ N , In = Jk ∩R whenever ϕ(n) ≤ k < ϕ(n+ 1) , then weak
I-adic topology on R is equal to the topology inherited from weak J-adic topology .

Proof. Fix t ∈ R . If C is a residue class of Jk in R′ then either R ∩ C = ∅ or
C = r + Jk and C ∩ R = r + (Jk ∩ R) for some r ∈ R . Moreover, if C = r + Jk with
r ∈ R such that r ≡ t (Jk−1), but r 6≡ t (Jk), then we must have Jk−1 ∩R 6= Jk ∩R , so
there exists n ∈ N with k = ϕ(n); and if we put D = C ∩ R then D = r + In 6= t + In
and D ⊆ t + In−1 . Conversely, if for some r ∈ R , D = r + In with r ≡ t (In−1) and
r 6≡ t (In) then D = R ∩ C , where C = r + Jϕ(n) ⊆ t+ Jϕ(n)−1 and C 6= t + Jϕ(n) . It
follows immediately from these considerations that the intersections of weak J -adic basis
neighborhoods of t with R are precisely the weak I-adic basis neighborhoods of t . �

Remark: If v′ is an extension of the discrete valuation v to a finite-dimensional
extension K ′ of K then Lemma 1 implies equality of weak Mv -adic topology on Rv with
the topology inherited from weak Mv′ -adic topology. Namely, if e ∈ N is the index of
the valuation group of v in the valuation group of v′ then Mv

n = Mv′
k ∩ R whenever

e · (n− 1) + 1 ≤ k < e · n+ 1.

Lemma 2. Let f ∈ Rv[x] , not all of whose coefficients lie in Mv , split over K , as
f(x) = d(x− b1) · . . . · (x− bm) · (x− c1) · . . . · (x− cl) , where v(bi) < 0 and v(ci) ≥ 0 ,
and put f+(x) = (x− c1) · . . . · (x− cl) . Then v(f(r)) = v(f+(r)) for all r ∈ Rv .

Proof. ∀r ∈ Rv v(r − bi) = v(bi) and v(f(r)) = v(d) +
∑m

i=1 v(bi) + v(f+(r));
we show v(d) = −

∑m
j=1 v(bi). Consider d−1f(x) = xn + an−1x

n−1 + . . . + a0 . Since
f ∈ Rv[x] \Mv[x] , v(d) = −min0≤i≤n v(ai). But the ai are the elementary symmetric
polynomials in the bi and ci , so min0≤i≤n v(ai) = v(an−m) =

∑m
i=1 v(bi). �
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Lemma 3. Let S be a set contained in Rv and a ∈ Rv . Then

a ∈S =⇒ ∀f ∈ K[x] ∃s ∈ S v(f(s)) ≤ v(f(a)) .

Proof. If S = ∅ or f is constant or f(a) = 0 the statement is trivial; from now on,
assume S 6= ∅ , deg(f) ≥ 1, and f(a) 6= 0. First consider a monic f ∈ Rv[x] that splits
over K : f(x) =

∏n
i=1(x−ci) with ci ∈ Rv . Since f(a) 6= 0, l = maxi v(a−ci) exists, and

v(f(a)) =
∑n

i=1 v(a− ci) =
∑

j≥1

∣∣{i | a ≡ ci mod M j
v}

∣∣ =
∑l

j=1

∣∣{i | a ≡ ci mod M j
v}

∣∣ .
Since a ∈ S , and S therefore intersects every U ∈ Ul+1(a), either there exists

s0 ∈ S ∩ (a+M l+1
v ), or there exists m ≤ l such that S intersects infinitely many residue

classes of Mm+1
v in a+Mm

v . In the first case, v(f(s0)) =
∑l

j=1

∣∣{i | s0 ≡ ci mod M j
v}

∣∣ =∑l
j=1

∣∣{i | a ≡ ci mod M j
v}

∣∣ = v(f(a)). In the second case, pick t0 ∈ S ∩ (a+Mm
v ) such

that t0 6≡ ci mod Mm+1
v for i = 1, . . . , n then v(f(t0)) =

∑m
j=1

∣∣{i | t0 ≡ ci mod M j
v}

∣∣ =∑m
j=1

∣∣{i | a ≡ ci mod M j
v}

∣∣ ≤ v(f(a)).

Now for a general f ∈ K[x] (with deg(f) ≥ 1 and f(a) 6= 0), write f as c · g with
c ∈ K , g ∈ Rv[x]\Mv[x] . It suffices to prove the claim for g . Let K ′ be the splitting field
of g over K , v′ an extension of v to K ′ (normalized to have value group Z , such that on
K , we have v′ = e·v, e ∈ N). Over K ′ we get g(x) = d(x−c1) . . . (x−cn)(x−b1) . . . (x−bm)
with v′(ci) ≥ 0, v′(bi) < 0. By Lemma 2, for every t ∈ Rv′ , v′(g(t)) = v′(g+(t)), where
g+(x) = (x−c1) . . . (x−cn). But now we know there exists s ∈ S with v′(g+(s)) ≤ v′(g+(a))
(using the fact that the closure of S in weak Mv -adic topology is contained in the closure
with respect to weak Mv′ -adic topology); and v(g(s)) = e−1v′(g(s)) = e−1v′(g+(s)) ≤
e−1v′(g+(a)) = e−1v′(g(a)) = v(g(a)). �

Lemma 4. Let S be a set contained in Rv and a ∈ Rv . Then

a 6∈S =⇒ ∃f ∈ [S][x] ∀s ∈ S v(f(s)) > v(f(a)) ,

where [S] denotes the ring generated by S in K .

Proof. If S = ∅ the statement is trivial, so assume S 6= ∅ . Since a 6∈S , there exists a
basis-neighborhood of a which S doesn’t intersect, and hence a minimal N ∈ N such that
S ∩ (a+Mv

N ) = ∅ and S meets only finitely many residue classes of Mv
n in a+Mv

n−1

for all n ≤ N . Inductively, from k = N − 1 down to k = 0, we construct a sequence of
polynomials fk ∈ [S][x] such that v(fk(s)) > v(fk(a)) for all s ∈ S ∩ (a+Mv

k).

Define fN−1(x) =
∏m

i=1(x − si), where s1, . . . , sm ∈ S are representatives of the
different residue classes of Mv

N that S intersects in a+Mv
N−1 . (Minimality of N and

the fact that S 6= ∅ guarantee that S intersects a + Mv
N−1 ; hence m 6= 0.) Then

v(fN−1(s)) ≥ m(N − 1) + 1 > m(N − 1) = v(fN−1(a)) for all s ∈ S ∩ (a+Mv
N−1).
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Given fk such that for all s ∈ S ∩ (a+Mv
k) v(fk(s)) ≥ c while v(fk(a)) = c− 1, we

construct fk−1 . Set d = min{v(fk(s)) | s ∈ S ∩ (a + Mv
k−1)} . If d ≥ c then fk−1 = fk

works. If d < c , let t1, . . . , tl ∈ S be representatives of the different residue classes of Mv
k

in a + Mv
k−1 , other than a + Mv

k , that S intersects. Define g(x) =
∏l

i=1(x − ti) and
fk−1 = gc−d · fk . Putting together the facts that

∀s ∈ S ∩
(
(a+Mv

k−1) \ (a+Mv
k)

)
v(g(s)) ≥ l(k − 1) + 1 and v(fk(s)) ≥ d ,

∀t ∈ a+Mv
k v(g(t)) = l(k − 1) ,

and ∀s ∈ S ∩ (a+Mv
k) v(fk(s)) ≥ c, while v(fk(a)) = c− 1 ,

we see that v(fk−1(a)) = (c− d)l(k− 1) + c− 1, while v(fk−1(s)) ≥ (c− d)l(k− 1) + c for
all s ∈ S ∩ a+Mv

k−1 . �

Proposition 1. If A and S are sets contained in Rv then

FRv
(S) ⊆ FRv

(A) ⇐⇒ A ⊆S .

Proof. For any a ∈S Lemma 3 shows that FRv
(S) ⊆ FRv

({a}). Conversely, if a 6∈S ,
Lemma 4 allows us to construct a member of FRv

(S) \ FRv
({a}) by multiplying the f in

the Lemma by a constant c ∈ K with v(c) = −mins∈S v(f(s)). The statement for A now
follows from the fact that FRv

(A) =
⋂

a∈A FRv
({a}). �

Corollary. If A and S are sets contained in Rv then

(i) FRv
(S) = FRv

(A) ⇐⇒ A =S

(ii) Rv−cl(S) =S .

4. Results for Krull-rings.

From now on, let R be a Krull ring, K its field of fractions, and P the set of height 1
prime ideals of R . If P ∈ P , we denote by P (n) , n ∈ N , the symbolic powers of P ,
P (n) = (PP )n ∩R , where PP is the extension of P to the localization RP . By S we now
mean the closure of S in the specified topology, be it weak {P (n) | n ∈ N} -adic, weak
P -adic or P -adic. A subset S of K is called R -fractional if S ⊆ d−1R for some d ∈ R . As
with Dedekind rings with finite residue fields (McQuillan [3]), the case of non-R -fractional
sets is simple (I thank F. Halter-Koch for spiffying up the following proposition, which I
had only shown for Krull rings, and in a more pedestrian manner.).
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Proposition 2. Let R be an integrally closed domain with quotient field K . If
A ⊆ K is not R -fractional then FR(A) consists only of the constant polynomials with
values in R and hence R−cl(A) = K .

Proof. Suppose f ∈ FR(A), deg f = n > 0. There exists c 6= 0 in R such that
cf = g ∈ R[x] , g(x) = cnx

n + . . . + c0 , cn 6= 0. For every a ∈ A , g(a) ∈ R implies that
cna is integral over R , and therefore cna ∈ R . Thus A ⊆ cn

−1R . �

We now turn to R -fractional sets.

Theorem 1. Let A and B be subsets of d−1R , d ∈ R , then

(i) FR(A) ⊆ FR(B) ⇐⇒ ∀P ∈ P B ⊆A in weak {P (n)}−adic topology on d−1R

(ii) R−cl(A) is the intersection of all weak {P (n)}− adic closures of A , P ∈ P .

Proof. In the case where A, B ⊆ R , we show that the following are equivalent:

(1) FR(A) ⊆ FR(B)

(2) ∀P ∈ P, B ⊆A in weak PP−adic topology on RP

(3) ∀P ∈ P, B ⊆A in weak {P (n)}−adic topology on R .

(1 ⇒ 2) Suppose B 6⊆ A in weak PP -adic topology for some fixed P ∈ P . Then
by Lemma 4 there exists a polynomial f ∈ [A][x] and an integer n , such that for all
a ∈ A vP (f(a)) ≥ n , and for some b ∈ B vP (f(b)) < n . By the Approximation
Theorem for Krull-rings [2, p90], there is a c ∈ K with vP (c) = −n and vQ(c) ≥ 0
for all Q 6= P , Q ∈ P . Then c · f ∈ FRP

(A), but c · f 6∈ FRP
(B). Also, for Q 6= P ,

Q ∈ P , c · f ∈ RQ[x] ⊆ FRQ
(A). Therefore, c · f is in FR(A), but not in FR(B).

(2 ⇒ 1) By Proposition 1, B ⊆ A in weak PP -adic topology implies FRP
(A) ⊆

FRP
(B). Using R =

⋂
P∈PRP we get FR(A) =

⋂
P∈P FRP

(A) ⊆
⋂

P∈P FRP
(B) = FR(B).

(2 ⇔ 3) Weak {P (n)} -adic topology on R is – by definition of P (n) and Lemma 1 –
exactly what R inherits from weak PP -adic topology on RP .

To reduce the fractional sets case to the subsets of R case we convince ourselves that:
(4) FR(A) ⊆ FR(B) if and only if FR(dA) ⊆ FR(dB) and
(5) For every P ∈ P , B ⊆ A in weak {P (n)} -adic topology on d−1R if and only if

dB ⊆ dA in weak {P (n)} -adic topology on R .

Ad (4) Consider ϕd:K[x] → K[x] , ϕd(f(x)) = f
(
d−1x

)
. Clearly, ϕd

(
FR(S)

)
=

FR(dS) for any set S ⊆ K . Because ϕd is a permutation of K[x] , ϕd(S) ⊆ ϕd(T ) if and
only if S ⊆ T for all S, T ⊆ K .

6



integer-valued polynomial closure

Ad (5) ψ: d−1R→ R , ψ(x) = dx (as an R -module isomorphism) is a homeomorphism
between the I-adic topologies on d−1R and R for any descending sequence of ideals I .

The characterization of R−cl(A) is now an easy consequence of its definition as the
unique largest set B with FR(A) ⊆ FR(B). �

In what follows, we use the fact that P (n) = Pn whenever Pn is a primary ideal.
This is always the case if P is a maximal ideal, but also when P is a principal prime ideal
in a unique factorization domain; so that in these cases, weak {P (n)} -adic topology is just
weak P -adic topology. Also note that weak I -adic topology is equal to I -adic topology
whenever [R : In] is finite for all n , such that for a height 1 prime ideal P of finite index
in a Krull ring, weak {P (n)} -adic topology is simply P -adic topology. In the case of a
Dedekind ring with finite residue fields, the following result is due to McQuillan [3].

Corollary. Let (R, P) be a Dedekind ring and its set of maximal ideals or a UFD
and its set of principal prime ideals. If A and B are subsets of d−1R , d ∈ R , then

(i) FR(A) ⊆ FR(B) ⇐⇒ ∀P ∈ P B ⊆A in weak P−adic topology on d−1R

(ii) R−cl(A) is the intersection of all weak P -adic closures of A , P ∈ P .

Theorem 2. Let S be a set contained in a subring A of a Krull ring R . Then
FR(S) = FR(A) if and only if for every height 1 prime ideal P of R

(a) for all n ∈ N with [A : P (n) ∩ A] finite, S contains a complete system of residues of
P (n) ∩A in A and

(b) for the minimal N (if such exists) with [A : P (N) ∩A] infinite, S intersects infinitely
many residue classes of P (N) ∩A in every residue class of P (N−1) ∩A in A .

Proof. The condition is clearly necessary and sufficient for S to intersect every weak
{P (n)} -adic neighborhood for all P ∈ P of every a ∈ A , that is for A to be contained in
the closure of S in weak {P (n)} -adic topology for all P ∈ P . �

Corollary 1. If S is a subset of a Krull ring R then FR(S) = FR(R) if and only
if S contains a complete residue system of Pn in R for every n ∈ N for every finite
index P ∈ P and infinitely many elements incongruent mod P for every P ∈ P of infinite
index.

Proof. Every finite index prime ideal P is maximal, therefore Pn is primary and
hence Pn = P (n) for all n ; and the only height 1 prime ideals P in a Krull ring with
[R : P (n)] infinite for some n are those of infinite index. �

Finally, when A = R in the following statement, we retrieve Gilmer’s [1] result.
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Corollary 2. If R is a Dedekind ring with finite residue fields, A a subring of R
and S ⊆ A then FR(S) = FR(A) if and only if S contains a complete set of residues of
Pn ∩A in A for every prime ideal P of R and every n ∈ N .
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