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Substitution and Closure of Sets under

Integer-Valued Polynomials

SoPHIE FRISCH

Abstract.

Let R be a domain and K its quotient-field. For a subset S of K, let Fr(S) be the set
of polynomials f € K[z] with f(S) C R and define the R-closure of S as the set of those
t € K for which f(t) € R for all f € Fr(S). The concept of R-closure was introduced
by McQuillan (J. Number Theory 39 (1991), 245-250), who gave a description in terms
of closure in P-adic topology, when R is a Dedekind ring with finite residue fields. We
introduce a toplogy related to, but weaker than P-adic topology, which allows us to treat
ideals of infinite index, and derive a characterization of R-closure when R is a Krull ring.
This gives us a criterion for Fr(S) = Fr(T), where S and T are subsets of K. As a
corollary we get a generalization to Krull rings of R. Gilmer’s result (J. Number Theory
33 (1989), 95-100) characterizing those subsets S of a Dedekind ring with finite residue
fields for which Fr(S) = Fr(R).

1. Introduction.

Let R be a domain and K its quotient-field. The ring of integer-valued polynomials on R
consists of those polynomials in K[z] that map R to itself, when acting as a function on
K by substitution of the variable. (The name stems from the classical case, where R is
the ring of integers in a number field.) Although this ring has been the object of extensive
study (originating with two seminal papers by Pélya [5] and Ostrowski [4]), some natural
questions have not been considered until fairly recently. If, for a subset S of K, we denote
by Fr(S) the set of R-valued polynomials on S, Fr(S) = {f € Klz] | f(S) C R}, a
question one may ask is which subsets of R can be substituted for R to define the ring
of integer-valued polynomials, Fr(S) = Fr(R). R. Gilmer [1] characterized those subsets
for a Dedekind ring with finite residue fields.

To investigate when Fr(S) = Fr(T), for arbitrary S, T C K, D. L. McQuillan [3]
introduced the R-closure of a set, R—cl(S) = {t € K |Vf € Fr(S) f(t) € R}. Clearly,
Fr(S) C Fr(T) if and only if T C R—cl(S). For a Dedekind ring with finite residue fields
McQuillan gave a description of the R-closure in terms of the closures in P-adic topology,
where P runs through the maximal ideals of R.
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INTEGER-VALUED POLYNOMIAL CLOSURE

In this paper we introduce a topology related to, but weaker than P-adic topology,
which allows us to handle prime ideals of infinite index. When R is a Dedekind ring (or
more generally a Krull ring), we give a characterization of the R-closure of sets in terms
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of “weak P-adic topology.” As a corollary we get a generalization of Gilmer’s result to

Krull rings.

2. Weak J-adic topology.

All rings considered will be commutative with identity. A descending chain of ideals in a
ring R is understood to be a sequence J = {I,, | n € N} of ideals with I,,;1 C I,, and we
set Iy := R. (The natural numbers N do not contain 0, but No = NU{0}.)

DEFINITION. Let R be a ring, J a descending chain of ideals in R and M an
R-module. We define weak J-adic topology on M by giving a neighborhood basis for
m € M: U(m) =U,_, Un(m), where U, (m) consists of all sets M \ |Jj_, Fj, such that
each E; is contained in m + I;_; M and is a finite union of residue classes of I;M , other
than m + ;M ,in M. (Thus U,(m) = {m+U |U € U,(0)}.)

DEFINITION. If [ is an ideal of R, weak I-adic topology is defined as weak J-adic
topology for J = {I™ | n € N}.

To see that the neighborhood bases U(m) define a topology on M we check that
(1) YU € U,(m) m+ I,M C U, in particular, m € U,
(2) U, Ve U,(m) = UNV € U,(m),
(3) VzeU € U,(m) IV € U,(z) VCU.

Ad (3): If z =m mod I,M then U,(z) = U,(m). If | < n is maximal such that
z=mmod [M and U = M \ U;‘:l E;, each E; being a finite union of residue classes
other than m + ;M in m+ I;_1M, then V = M\ (Uéill E; U (m+ I41M)) CU and
Ve Uii(z) C Uy (2).

Remarks. (3) shows that basis neighborhoods are open and (1) implies that weak
I-adic topology is actually weaker than [-adic topology.

Perhaps a more natural way to look at weak J-adic topology on a ring R is the
following: If (", I,, = (0) then there is an embedding ¢ of R (otherwise of R / (", I,)
into [[°2, In-1/In (for n € N let {¢;(™ | 0 < j < [I,—1 : I,]} be a residue system of
I,,_1 mod I, and for r € R define «(r) := (cjn(,q)(”))zo:l by r = Zle cjn(r)(”) mod Iy
for all N € N). Weak J-adic topology is then induced on R by the product topology
of co-finite topology on each factor I,,_1/I,. If, for an ideal I in R, we compare I-adic
topology to weak [I-adic topology, we see that the former is induced by product topology of
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discrete topology on [[ 2, I n=1/[" and thus is stronger than the latter, and that equality
holds if and only if [I™~!: I"] is finite for all n € N.

3. Local investigations.

Throughout the “local” section, v is a discrete valuation (with value group equal to Z
and v(0) = c0) on a field K and R, its valuation ring with maximal ideal M, . If S is
a set contained in R, we denote the closure of S in weak M, -adic topology by S. We
shall see that weak M, -adic topology on R, arises naturally as “topology of closure under
integer-valued polynomials,” in that S = R,—cl(S). We need a few technical Lemmata.

LEMMA 1. Let R be a subring of a ring R', and I, J descending chains of ideals
in R and R, respectively. If there exists a strictly increasing function ¢ : N — N with
©(1) =1 such that for all n € N, I,, = J N R whenever p(n) < k < p(n+1), then weak
J-adic topology on R is equal to the topology inherited from weak J-adic topology .

Proof. Fix t € R. If C is a residue class of Jy in R’ then either RN C = () or
C=r+J,and CNR=r+ (Jpy NR) for some r € R. Moreover, if C = r + J; with
r € R such that r =t (Jx_1), but » Z ¢ (J), then we must have Jy_1 N R # Jy N R, so
there exists n € N with & = ¢(n); and if we put D = CNR then D =r+1, #t+ I,
and D C t+ I,,_1. Conversely, if for some r € R, D = r + I, with r = ¢ (I,—1) and
r#t (I,) then D = RNC, where C =1+ Jy) Ct+ Jymy—1 and C # t+ Jyp). It
follows immediately from these considerations that the intersections of weak J-adic basis
neighborhoods of ¢ with R are precisely the weak J-adic basis neighborhoods of ¢. O

Remark: If v' is an extension of the discrete valuation v to a finite-dimensional
extension K’ of K then Lemma 1 implies equality of weak M, -adic topology on R, with
the topology inherited from weak M, -adic topology. Namely, if e € N is the index of
the valuation group of v in the valuation group of v’ then M," = M,"* N R whenever
e-n—1)+1<k<e-n+1.

LEMMA 2. Let f € R,[z], not all of whose coefficients lie in M, , split over K, as
fl@)=dx—0b1) ...-(x—=bp) - (r—c1) ... (x —¢), where v(b;) <0 and v(c;) >0,
and put f, (x)=(x—c1)...-(x—¢). Then v(f(r)) =v(f.(r)) forall r € R,.

Proof. Vr € R, v(r —b;) = v(b;) and v(f(r)) = v(d) + Yir; v(bi) + v(f(r));
we show v(d) = —> 7" v(b;). Consider d7lf(x) = 2" + ap_12" ' + ... + ag. Since
f € Rylz] \ Myz], v(d) = —ming<;<pv(a;). But the a; are the elementary symmetric
polynomials in the b; and ¢;, so ming<;<n v(a;) = vV(an—m) =Y oy v(b;). O
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LEMMA 3. Let S be a set contained in R, and a € R, . Then
a€S = VfecKlx] Is€8S v(f(s)) <v(f(a)).

Proof. If S = or f is constant or f(a) = 0 the statement is trivial; from now on,
assume S # (), deg(f) > 1, and f(a) # 0. First consider a monic f € R,[z]| that splits
over K: f(z) =[[i—;(z—¢;) with ¢; € R,. Since f(a) # 0, | = max; v(a—¢;) exists, and
v(f(a)) = > v(a—¢) = 2321 ‘{z |a = ¢; mod Mg}‘ = 22:1 |{z |a = ¢; mod Mg}}

Since a € S, and S therefore intersects every U € Uj.1(a), either there exists
s0 € SN (a+ ML), or there exists m <[ such that S intersects infinitely many residue
classes of M1 in a+ M™. In the first case, v(f(sg)) = Zézl‘{z | 50 = ¢; mod Mi}| =
Z;Zl‘{i la =c¢; mod Mi}| = v(f(a)). In the second case, pick to € SN (a+ M) such
that to # ¢; mod M"™! for i =1,...,n then v(f(to)) = Y.7=[{i|to = ¢ mod MJ}| =
S {0 = ¢ mod Mi}| < v(f(a)).

Now for a general f € K[z] (with deg(f) > 1 and f(a) # 0), write f as c¢-g with
ce K, g€ R,[z]\ M,[x]. It suffices to prove the claim for g. Let K’ be the splitting field
of g over K, v’ an extension of v to K’ (normalized to have value group Z, such that on
K, we have v' = e, e € N). Over K’ we get g(z) = d(z—c1)...(z—cp)(x—b1) ... (x—by,)
with v'(¢;) > 0, v/(b;) < 0. By Lemma 2, for every t € Ry, v'(g(t)) = v'(g,(t)), where
g.(x) = (z—c1)...(x—cy). But now we know there exists s € S with v’(g,(s)) < v'(g.(a))
(using the fact that the closure of S in weak M, -adic topology is contained in the closure
with respect to weak M, -adic topology); and v(g(s)) = e 1v'(g(s)) = e 1/(g.(s)) <
e (g4 (a)) = e7 ' (g(a)) = v(g(a)). O

LEMMA 4. Let S be a set contained in R, and a € R, . Then
agS = 3fe[Slla] Vs€ S v(f(s))>v(f(a)),
where [S]| denotes the ring generated by S in K .

Proof. If S = () the statement is trivial, so assume S # (). Since a €S, there exists a
basis-neighborhood of a which S doesn’t intersect, and hence a minimal N € N such that
SN (a+ M,") =0 and S meets only finitely many residue classes of M," in a + M,"*
for all n < N. Inductively, from £ = N — 1 down to k = 0, we construct a sequence of
polynomials f;, € [S][z] such that v(fi(s)) > v(fe(a)) for all s € SN (a+ M,").

Define fn_1(z) = [[\2;(z — s;), where si,...,s,, € S are representatives of the
different residue classes of M,” that S intersects in a 4+ M, ~'. (Minimality of N and
the fact that S # (0 guarantee that S intersects a + M,Y~!; hence m # 0.) Then
v(fn_1(5) >m(N —1)+1>m(N — 1) = v(fy_1(a)) for all se€ SN (a+ M 1),
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Given f, such that for all s € SN (a+ M,") v(fe(s)) > ¢ while v(fi(a)) =c—1, we
construct fy_1. Set d = min{v(fi(s))|s € SN (a+ M, N}. If d > ¢ then fr_1 = f
works. If d < ¢, let t1,...,t; € S be representatives of the different residue classes of M,*
in a+ M," ", other than a + M,"”, that S intersects. Define g(z) = Hizl(x —t;) and
fr_1 = ¢ %. f,,. Putting together the facts that

Vse SN ((a+ M, 9\ (a + ka)) v(g(s)) > l(k—1)4+1 and v(fx(s)) >d,

Vt€a+ M) wigt)=1(k—-1),
and Vs e SN (a+ M) v(fu(s)) >¢, while v(fr(a))=c—1,

we see that v(fr_1(a)) = (c—d)l(k—1)+c—1, while v(fr_1(s)) > (c—d)l(k—1)+ ¢ for
all s€ SNa+ M, O

ProprosITION 1. If A and S are sets contained in R, then
Fr,(S) C Fr,(A) <+ ACS.

Proof. For any a €S Lemma 3 shows that Fr, (S) C Fg, ({a}). Conversely, if a ¢S,
Lemma 4 allows us to construct a member of Fg, (S)\ Fgr,({a}) by multiplying the f in
the Lemma by a constant ¢ € K with v(¢) = —mingeg v(f(s)). The statement for A now
follows from the fact that Fg,(A4) = (,c4 Fr,({a}). O

COROLLARY. If A and S are sets contained in R, then

(i) Fr,(8)=Fr (A) = A=S
(ii) R,—cl(S) =S.

4. Results for Krull-rings.

From now on, let R be a Krull ring, K its field of fractions, and P the set of height 1
prime ideals of R. If P € P, we denote by P, n € N, the symbolic powers of P,
P™ = (Pp)" N R, where Pp is the extension of P to the localization Rp. By S we now
mean the closure of S in the specified topology, be it weak {P( | n € N}-adic, weak
P-adic or P-adic. A subset S of K is called R-fractional if S C d—'R for some d € R. As
with Dedekind rings with finite residue fields (McQuillan [3]), the case of non- R-fractional
sets is simple (I thank F. Halter-Koch for spiffying up the following proposition, which I
had only shown for Krull rings, and in a more pedestrian manner.).
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PROPOSITION 2. Let R be an integrally closed domain with quotient field K. If
A C K is not R-fractional then Fr(A) consists only of the constant polynomials with
values in R and hence R—cl(A) = K .

Proof. Suppose f € Fr(A), degf = n > 0. There exists ¢ # 0 in R such that
cf =g € Rlz], g(x) =cpz™ + ...+ co, ¢, #0. For every a € A, g(a) € R implies that
cpa is integral over R, and therefore c,a € R. Thus A C ¢, 'R. O

We now turn to R-fractional sets.

THEOREM 1. Let A and B be subsets of 'R, d € R, then
(i) Fr(A) C Fr(B) <= VP &P B CA in weak {P"™}—adic topology on d~'R
(ii) R—cl(A) is the intersection of all weak {P™}— adic closures of A, P € P.

Proof. In the case where A, B C R , we show that the following are equivalent:

(1) Fr(A) € Fr(B)
(2) VP € P, B CA in weak Pp—adic topology on Rp
(3) VP € P, B CA in weak {P™}—adic topology on R.

(1 = 2) Suppose B € A in weak Pp-adic topology for some fixed P € P. Then
by Lemma 4 there exists a polynomial f € [A][z] and an integer n, such that for all
a € A vp(f(a)) > n, and for some b € B vp(f(b)) < n. By the Approximation
Theorem for Krull-rings [2, p90], there is a ¢ € K with vp(c) = —n and vg(c) > 0
forall @ # P, Q € P. Then c¢- f € Fr.(A), but ¢- f & Fr,.(B). Also, for Q # P,
Q€ P, c- feRglx] C Fr,(A). Therefore, ¢ f is in Fr(A), but not in Fr(B).

(2 = 1) By Proposition 1, B C A in weak Pp-adic topology implies Fg, (A4) C
Frp(B). Using R =[pcyp Rp we get Fr(A) =pep Fre(A) Spep Fre(B) = Fr(B).

(2 < 3) Weak {P(™}-adic topology on R is — by definition of P("™) and Lemma 1 —
exactly what R inherits from weak Pp-adic topology on Rp.

To reduce the fractional sets case to the subsets of R case we convince ourselves that:
(4) Fr(A) C Fr(B) if and only if Fr(dA) C Fr(dB) and
(5) For every P € P, B C A in weak {P(™}-adic topology on d~'R if and only if
dB C dA in weak {P}-adic topology on R.

Ad (4) Consider ¢q4: K[z] — Klz], ¢a(f(z)) = f(d"'z) . Clearly, ¢4(Fr(S)) =
Fr(dS) for any set S C K. Because g4 is a permutation of K[z], va(S) C pq(T) if and
only if SCT forall S, T C K.
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Ad (5) ¢¥:d 'R — R, ¥(z) = dz (as an R-module isomorphism) is a homeomorphism
between the J-adic topologies on d~'R and R for any descending sequence of ideals J.

The characterization of R—cl(A) is now an easy consequence of its definition as the
unique largest set B with Fr(A) C Fr(B). O

In what follows, we use the fact that P(™ = P™ whenever P"™ is a primary ideal.
This is always the case if P is a maximal ideal, but also when P is a principal prime ideal
in a unique factorization domain; so that in these cases, weak {P(”)}—adic topology is just
weak P-adic topology. Also note that weak [I-adic topology is equal to I-adic topology
whenever [R : I™] is finite for all n, such that for a height 1 prime ideal P of finite index
in a Krull ring, weak {P(™}-adic topology is simply P-adic topology. In the case of a
Dedekind ring with finite residue fields, the following result is due to McQuillan [3].

COROLLARY. Let (R, P) be a Dedekind ring and its set of maximal ideals or a UFD
and its set of principal prime ideals. If A and B are subsets of d" 'R, d € R, then
(i) Fr(A) C Fr(B) <= VP €®P BCA in weak P—adic topology on d 'R
(ii) R—cl(A) is the intersection of all weak P -adic closures of A, P € P.

THEOREM 2. Let S be a set contained in a subring A of a Krull ring R. Then

Fr(S) = Fr(A) if and only if for every height 1 prime ideal P of R

(a) for all n € N with [A: P N A] finite, S contains a complete system of residues of
PMNAinA and

(b) for the minimal N (if such exists) with [A: PWN) 0 A] infinite, S intersects infinitely
many residue classes of PN) N A in every residue class of PN"D N A in A.

Proof. The condition is clearly necessary and sufficient for S to intersect every weak
{P(™}_adic neighborhood for all P € P of every a € A, that is for A to be contained in
the closure of S in weak {P(™}-adic topology for all P € P. [

COROLLARY 1. If S is a subset of a Krull ring R then Fr(S) = Fr(R) if and only
if S contains a complete residue system of P™ in R for every n € N for every finite
index P € P and infinitely many elements incongruent mod P for every P € P of infinite
index.

Proof. Every finite index prime ideal P is maximal, therefore P" is primary and
hence P* = P for all n; and the only height 1 prime ideals P in a Krull ring with
[R: P™)] infinite for some n are those of infinite index. O

Finally, when A = R in the following statement, we retrieve Gilmer’s [1] result.
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COROLLARY 2. If R is a Dedekind ring with finite residue fields, A a subring of R
and S C A then Fr(S) = Fr(A) if and only if S contains a complete set of residues of
P"NA in A for every prime ideal P of R and every n € N.
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