Substitution and Closure of Sets under Integer-Valued Polynomials

Sophie Frisch

Abstract

. Let R be a domain and K its quotient-field. For a subset S of K, let $\mathcal{F}_{R}(S)$ be the set of polynomials $f \in K[x]$ with $f(S) \subseteq R$ and define the R-closure of S as the set of those $t \in K$ for which $f(t) \in R$ for all $f \in \mathcal{F}_{R}(S)$. The concept of R-closure was introduced by McQuillan (J. Number Theory 39 (1991), 245-250), who gave a description in terms of closure in P-adic topology, when R is a Dedekind ring with finite residue fields. We introduce a toplogy related to, but weaker than P-adic topology, which allows us to treat ideals of infinite index, and derive a characterization of R-closure when R is a Krull ring. This gives us a criterion for $\mathcal{F}_{R}(S)=\mathcal{F}_{R}(T)$, where S and T are subsets of K. As a corollary we get a generalization to Krull rings of R. Gilmer's result (J. Number Theory 33 (1989), 95-100) characterizing those subsets S of a Dedekind ring with finite residue fields for which $\mathcal{F}_{R}(S)=\mathcal{F}_{R}(R)$.

1. Introduction.

Let R be a domain and K its quotient-field. The ring of integer-valued polynomials on R consists of those polynomials in $K[x]$ that map R to itself, when acting as a function on K by substitution of the variable. (The name stems from the classical case, where R is the ring of integers in a number field.) Although this ring has been the object of extensive study (originating with two seminal papers by Pólya [5] and Ostrowski [4]), some natural questions have not been considered until fairly recently. If, for a subset S of K, we denote by $\mathcal{F}_{R}(S)$ the set of R-valued polynomials on $S, \mathcal{F}_{R}(S)=\{f \in K[x] \mid f(S) \subseteq R\}$, a question one may ask is which subsets of R can be substituted for R to define the ring of integer-valued polynomials, $\mathcal{F}_{R}(S)=\mathcal{F}_{R}(R)$. R. Gilmer [1] characterized those subsets for a Dedekind ring with finite residue fields.

To investigate when $\mathcal{F}_{R}(S)=\mathcal{F}_{R}(T)$, for arbitrary $S, T \subseteq K$, D. L. McQuillan [3] introduced the R-closure of a set, $R-\operatorname{cl}(S)=\left\{t \in K \mid \forall f \in \mathcal{F}_{R}(S) f(t) \in R\right\}$. Clearly, $\mathcal{F}_{R}(S) \subseteq \mathcal{F}_{R}(T)$ if and only if $T \subseteq R-\operatorname{cl}(S)$. For a Dedekind ring with finite residue fields McQuillan gave a description of the R-closure in terms of the closures in P-adic topology, where P runs through the maximal ideals of R.

In this paper we introduce a topology related to, but weaker than P-adic topology, which allows us to handle prime ideals of infinite index. When R is a Dedekind ring (or more generally a Krull ring), we give a characterization of the R-closure of sets in terms of "weak P-adic topology." As a corollary we get a generalization of Gilmer's result to Krull rings.

2. Weak J-adic topology.

All rings considered will be commutative with identity. A descending chain of ideals in a ring R is understood to be a sequence $\mathcal{J}=\left\{I_{n} \mid n \in \mathbb{N}\right\}$ of ideals with $I_{n+1} \subseteq I_{n}$ and we set $I_{0}:=R$. (The natural numbers \mathbb{N} do not contain 0 , but $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.)

Definition. Let R be a ring, J a descending chain of ideals in R and M an R-module. We define weak J-adic topology on M by giving a neighborhood basis for $m \in M: \mathcal{U}(m)=\bigcup_{n=1}^{\infty} \mathcal{U}_{n}(m)$, where $\mathcal{U}_{n}(m)$ consists of all sets $M \backslash \bigcup_{j=1}^{n} E_{j}$, such that each E_{j} is contained in $m+I_{j-1} M$ and is a finite union of residue classes of $I_{j} M$, other than $m+I_{j} M$, in M. (Thus $\mathcal{U}_{n}(m)=\left\{m+U \mid U \in \mathcal{U}_{n}(0)\right\}$.)

Definition. If I is an ideal of R, weak I-adic topology is defined as weak J-adic topology for $\mathcal{J}=\left\{I^{n} \mid n \in \mathbb{N}\right\}$.

To see that the neighborhood bases $\mathcal{U}(m)$ define a topology on M we check that
(1) $\forall U \in \mathcal{U}_{n}(m) m+I_{n} M \subseteq U$, in particular, $m \in U$,
(2) $U, V \in \mathcal{U}_{n}(m) \Longrightarrow U \cap V \in \mathcal{U}_{n}(m)$,
(3) $\forall z \in U \in \mathcal{U}_{n}(m) \exists V \in \mathcal{U}_{n}(z) \quad V \subseteq U$.
$\operatorname{Ad}(3):$ If $z \equiv m \bmod I_{n} M$ then $\mathcal{U}_{n}(z)=\mathcal{U}_{n}(m)$. If $l<n$ is maximal such that $z \equiv m \bmod I_{l} M$ and $U=M \backslash \bigcup_{j=1}^{n} E_{j}$, each E_{j} being a finite union of residue classes other than $m+I_{j} M$ in $m+I_{j-1} M$, then $V=M \backslash\left(\bigcup_{j=1}^{l+1} E_{j} \cup\left(m+I_{l+1} M\right)\right) \subseteq U$ and $V \in \mathcal{U}_{l+1}(z) \subseteq \mathcal{U}_{n}(z)$.

Remarks. (3) shows that basis neighborhoods are open and (1) implies that weak I-adic topology is actually weaker than I-adic topology.

Perhaps a more natural way to look at weak \mathcal{J}-adic topology on a ring R is the following: If $\bigcap_{n=1}^{\infty} I_{n}=(0)$ then there is an embedding ι of R (otherwise of $R / \bigcap_{n=1}^{\infty} I_{n}$) into $\prod_{n=1}^{\infty} I_{n-1} / I_{n}$ (for $n \in \mathbb{N}$ let $\left\{c_{j}^{(n)} \mid 0 \leq j<\left[I_{n-1}: I_{n}\right]\right\}$ be a residue system of $I_{n-1} \bmod I_{n}$ and for $r \in R$ define $\iota(r):=\left(c_{j_{n}(r)}{ }^{(n)}\right)_{n=1}^{\infty}$ by $r \equiv \sum_{n=1}^{N} c_{j_{n}(r)}{ }^{(n)} \bmod I_{N}$ for all $N \in \mathbb{N}$). Weak \mathcal{J}-adic topology is then induced on R by the product topology of co-finite topology on each factor I_{n-1} / I_{n}. If, for an ideal I in R, we compare I-adic topology to weak I-adic topology, we see that the former is induced by product topology of
discrete topology on $\prod_{n=1}^{\infty} I^{n-1} / I^{n}$, and thus is stronger than the latter, and that equality holds if and only if $\left[I^{n-1}: I^{n}\right.$] is finite for all $n \in \mathbb{N}$.

3. Local investigations.

Throughout the "local" section, v is a discrete valuation (with value group equal to \mathbb{Z} and $v(0)=\infty)$ on a field K and R_{v} its valuation ring with maximal ideal M_{v}. If S is a set contained in R_{v} we denote the closure of S in weak M_{v}-adic topology by \bar{S}. We shall see that weak M_{v}-adic topology on R_{v} arises naturally as "topology of closure under integer-valued polynomials," in that $\bar{S}=R_{v}-\operatorname{cl}(S)$. We need a few technical Lemmata.

Lemma 1. Let R be a subring of a ring R^{\prime}, and \mathcal{J}, \mathcal{J} descending chains of ideals in R and R^{\prime}, respectively. If there exists a strictly increasing function $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ with $\varphi(1)=1$ such that for all $n \in \mathbb{N}, I_{n}=J_{k} \cap R$ whenever $\varphi(n) \leq k<\varphi(n+1)$, then weak \mathcal{J}-adic topology on R is equal to the topology inherited from weak \mathcal{J}-adic topology .

Proof. Fix $t \in R$. If C is a residue class of J_{k} in R^{\prime} then either $R \cap C=\emptyset$ or $C=r+J_{k}$ and $C \cap R=r+\left(J_{k} \cap R\right)$ for some $r \in R$. Moreover, if $C=r+J_{k}$ with $r \in R$ such that $r \equiv t\left(J_{k-1}\right)$, but $r \not \equiv t\left(J_{k}\right)$, then we must have $J_{k-1} \cap R \neq J_{k} \cap R$, so there exists $n \in \mathbb{N}$ with $k=\varphi(n)$; and if we put $D=C \cap R$ then $D=r+I_{n} \neq t+I_{n}$ and $D \subseteq t+I_{n-1}$. Conversely, if for some $r \in R, D=r+I_{n}$ with $r \equiv t\left(I_{n-1}\right)$ and $r \not \equiv t\left(I_{n}\right)$ then $D=R \cap C$, where $C=r+J_{\varphi(n)} \subseteq t+J_{\varphi(n)-1}$ and $C \neq t+J_{\varphi(n)}$. It follows immediately from these considerations that the intersections of weak \mathcal{J}-adic basis neighborhoods of t with R are precisely the weak \mathcal{J}-adic basis neighborhoods of t.

Remark: If v^{\prime} is an extension of the discrete valuation v to a finite-dimensional extension K^{\prime} of K then Lemma 1 implies equality of weak M_{v}-adic topology on R_{v} with the topology inherited from weak $M_{v^{\prime}}$-adic topology. Namely, if $e \in \mathbb{N}$ is the index of the valuation group of v in the valuation group of v^{\prime} then $M_{v}{ }^{n}=M_{v^{\prime}}{ }^{k} \cap R$ whenever $e \cdot(n-1)+1 \leq k<e \cdot n+1$.

Lemma 2. Let $f \in R_{v}[x]$, not all of whose coefficients lie in M_{v}, split over K, as $f(x)=d\left(x-b_{1}\right) \cdot \ldots \cdot\left(x-b_{m}\right) \cdot\left(x-c_{1}\right) \cdot \ldots \cdot\left(x-c_{l}\right)$, where $v\left(b_{i}\right)<0$ and $v\left(c_{i}\right) \geq 0$, and put $f_{+}(x)=\left(x-c_{1}\right) \cdot \ldots \cdot\left(x-c_{l}\right)$. Then $v(f(r))=v\left(f_{+}(r)\right)$ for all $r \in R_{v}$.

Proof. $\forall r \in R_{v} v\left(r-b_{i}\right)=v\left(b_{i}\right)$ and $v(f(r))=v(d)+\sum_{i=1}^{m} v\left(b_{i}\right)+v\left(f_{+}(r)\right)$; we show $v(d)=-\sum_{j=1}^{m} v\left(b_{i}\right)$. Consider $d^{-1} f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$. Since $f \in R_{v}[x] \backslash M_{v}[x], v(d)=-\min _{0 \leq i \leq n} v\left(a_{i}\right)$. But the a_{i} are the elementary symmetric polynomials in the b_{i} and c_{i}, so $\min _{0 \leq i \leq n} v\left(a_{i}\right)=v\left(a_{n-m}\right)=\sum_{i=1}^{m} v\left(b_{i}\right)$.

Lemma 3. Let S be a set contained in R_{v} and $a \in R_{v}$. Then

$$
a \in \bar{S} \quad \Longrightarrow \quad \forall f \in K[x] \exists s \in S \quad v(f(s)) \leq v(f(a))
$$

Proof. If $S=\emptyset$ or f is constant or $f(a)=0$ the statement is trivial; from now on, assume $S \neq \emptyset, \operatorname{deg}(f) \geq 1$, and $f(a) \neq 0$. First consider a monic $f \in R_{v}[x]$ that splits over $K: f(x)=\prod_{i=1}^{n}\left(x-c_{i}\right)$ with $c_{i} \in R_{v}$. Since $f(a) \neq 0, l=\max _{i} v\left(a-c_{i}\right)$ exists, and $v(f(a))=\sum_{i=1}^{n} v\left(a-c_{i}\right)=\sum_{j \geq 1}\left|\left\{i \mid a \equiv c_{i} \bmod M_{v}^{j}\right\}\right|=\sum_{j=1}^{l}\left|\left\{i \mid a \equiv c_{i} \bmod M_{v}^{j}\right\}\right|$.

Since $a \in \bar{S}$, and S therefore intersects every $U \in \mathcal{U}_{l+1}(a)$, either there exists $s_{0} \in S \cap\left(a+M_{v}^{l+1}\right)$, or there exists $m \leq l$ such that S intersects infinitely many residue classes of M_{v}^{m+1} in $a+M_{v}^{m}$. In the first case, $v\left(f\left(s_{0}\right)\right)=\sum_{j=1}^{l}\left|\left\{i \mid s_{0} \equiv c_{i} \bmod M_{v}^{j}\right\}\right|=$ $\sum_{j=1}^{l}\left|\left\{i \mid a \equiv c_{i} \bmod M_{v}^{j}\right\}\right|=v(f(a))$. In the second case, pick $t_{0} \in S \cap\left(a+M_{v}^{m}\right)$ such that $t_{0} \not \equiv c_{i} \bmod M_{v}^{m+1}$ for $i=1, \ldots, n$ then $v\left(f\left(t_{0}\right)\right)=\sum_{j=1}^{m}\left|\left\{i \mid t_{0} \equiv c_{i} \bmod M_{v}^{j}\right\}\right|=$ $\sum_{j=1}^{m}\left|\left\{i \mid a \equiv c_{i} \bmod M_{v}^{j}\right\}\right| \leq v(f(a))$.

Now for a general $f \in K[x]$ (with $\operatorname{deg}(f) \geq 1$ and $f(a) \neq 0$), write f as $c \cdot g$ with $c \in K, g \in R_{v}[x] \backslash M_{v}[x]$. It suffices to prove the claim for g. Let K^{\prime} be the splitting field of g over K, v^{\prime} an extension of v to K^{\prime} (normalized to have value group \mathbb{Z}, such that on K, we have $\left.v^{\prime}=e \cdot v, e \in \mathbb{N}\right)$. Over K^{\prime} we get $g(x)=d\left(x-c_{1}\right) \ldots\left(x-c_{n}\right)\left(x-b_{1}\right) \ldots\left(x-b_{m}\right)$ with $v^{\prime}\left(c_{i}\right) \geq 0, v^{\prime}\left(b_{i}\right)<0$. By Lemma 2, for every $t \in R_{v^{\prime}}, v^{\prime}(g(t))=v^{\prime}\left(g_{+}(t)\right)$, where $g_{+}(x)=\left(x-c_{1}\right) \ldots\left(x-c_{n}\right)$. But now we know there exists $s \in S$ with $v^{\prime}\left(g_{+}(s)\right) \leq v^{\prime}\left(g_{+}(a)\right)$ (using the fact that the closure of S in weak M_{v}-adic topology is contained in the closure with respect to weak $M_{v^{\prime}}$-adic topology); and $v(g(s))=e^{-1} v^{\prime}(g(s))=e^{-1} v^{\prime}\left(g_{+}(s)\right) \leq$ $e^{-1} v^{\prime}\left(g_{+}(a)\right)=e^{-1} v^{\prime}(g(a))=v(g(a))$.

Lemma 4. Let S be a set contained in R_{v} and $a \in R_{v}$. Then

$$
a \notin \bar{S} \quad \Longrightarrow \quad \exists f \in[S][x] \forall s \in S \quad v(f(s))>v(f(a)),
$$

where $[S]$ denotes the ring generated by S in K.
Proof. If $S=\emptyset$ the statement is trivial, so assume $S \neq \emptyset$. Since $a \notin \bar{S}$, there exists a basis-neighborhood of a which S doesn't intersect, and hence a minimal $N \in \mathbb{N}$ such that $S \cap\left(a+M_{v}{ }^{N}\right)=\emptyset$ and S meets only finitely many residue classes of $M_{v}{ }^{n}$ in $a+M_{v}{ }^{n-1}$ for all $n \leq N$. Inductively, from $k=N-1$ down to $k=0$, we construct a sequence of polynomials $f_{k} \in[S][x]$ such that $v\left(f_{k}(s)\right)>v\left(f_{k}(a)\right)$ for all $s \in S \cap\left(a+M_{v}{ }^{k}\right)$.

Define $f_{N-1}(x)=\prod_{i=1}^{m}\left(x-s_{i}\right)$, where $s_{1}, \ldots, s_{m} \in S$ are representatives of the different residue classes of $M_{v}{ }^{N}$ that S intersects in $a+M_{v}{ }^{N-1}$. (Minimality of N and the fact that $S \neq \emptyset$ guarantee that S intersects $a+M_{v}{ }^{N-1}$; hence $m \neq 0$.) Then $v\left(f_{N-1}(s)\right) \geq m(N-1)+1>m(N-1)=v\left(f_{N-1}(a)\right)$ for all $s \in S \cap\left(a+M_{v}{ }^{N-1}\right)$.

Given f_{k} such that for all $s \in S \cap\left(a+M_{v}{ }^{k}\right) v\left(f_{k}(s)\right) \geq c$ while $v\left(f_{k}(a)\right)=c-1$, we construct f_{k-1}. Set $d=\min \left\{v\left(f_{k}(s)\right) \mid s \in S \cap\left(a+M_{v}{ }^{k-1}\right)\right\}$. If $d \geq c$ then $f_{k-1}=f_{k}$ works. If $d<c$, let $t_{1}, \ldots, t_{l} \in S$ be representatives of the different residue classes of $M_{v}{ }^{k}$ in $a+M_{v}{ }^{k-1}$, other than $a+M_{v}{ }^{k}$, that S intersects. Define $g(x)=\prod_{i=1}^{l}\left(x-t_{i}\right)$ and $f_{k-1}=g^{c-d} \cdot f_{k}$. Putting together the facts that

$$
\begin{gathered}
\forall s \in S \cap\left(\left(a+M_{v}^{k-1}\right) \backslash\left(a+M_{v}^{k}\right)\right) \quad v(g(s)) \geq l(k-1)+1 \quad \text { and } \quad v\left(f_{k}(s)\right) \geq d, \\
\forall t \in a+M_{v}^{k} \quad v(g(t))=l(k-1)
\end{gathered}
$$

and $\quad \forall s \in S \cap\left(a+M_{v}{ }^{k}\right) \quad v\left(f_{k}(s)\right) \geq c, \quad$ while $\quad v\left(f_{k}(a)\right)=c-1$,
we see that $v\left(f_{k-1}(a)\right)=(c-d) l(k-1)+c-1$, while $v\left(f_{k-1}(s)\right) \geq(c-d) l(k-1)+c$ for all $s \in S \cap a+M_{v}{ }^{k-1}$.

Proposition 1. If A and S are sets contained in R_{v} then

$$
\mathcal{F}_{R_{v}}(S) \subseteq \mathcal{F}_{R_{v}}(A) \quad \Longleftrightarrow \quad A \subseteq \bar{S}
$$

Proof. For any $a \in \bar{S}$ Lemma 3 shows that $\mathcal{F}_{R_{v}}(S) \subseteq \mathcal{F}_{R_{v}}(\{a\})$. Conversely, if $a \notin \bar{S}$, Lemma 4 allows us to construct a member of $\mathcal{F}_{R_{v}}(S) \backslash \mathcal{F}_{R_{v}}(\{a\})$ by multiplying the f in the Lemma by a constant $c \in K$ with $v(c)=-\min _{s \in S} v(f(s))$. The statement for A now follows from the fact that $\mathcal{F}_{R_{v}}(A)=\bigcap_{a \in A} \mathcal{F}_{R_{v}}(\{a\})$.

Corollary. If A and S are sets contained in R_{v} then

$$
\begin{equation*}
\mathcal{F}_{R_{v}}(S)=\mathcal{F}_{R_{v}}(A) \quad \Longleftrightarrow \quad \bar{A}=\bar{S} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
R_{v}-\operatorname{cl}(S)=\bar{S} \tag{ii}
\end{equation*}
$$

4. Results for Krull-rings.

From now on, let R be a Krull ring, K its field of fractions, and \mathcal{P} the set of height 1 prime ideals of R. If $P \in \mathcal{P}$, we denote by $P^{(n)}, n \in \mathbb{N}$, the symbolic powers of P, $P^{(n)}=\left(P_{P}\right)^{n} \cap R$, where P_{P} is the extension of P to the localization R_{P}. By \bar{S} we now mean the closure of S in the specified topology, be it weak $\left\{P^{(n)} \mid n \in \mathbb{N}\right\}$-adic, weak P-adic or P-adic. A subset S of K is called R-fractional if $S \subseteq d^{-1} R$ for some $d \in R$. As with Dedekind rings with finite residue fields (McQuillan [3]), the case of non- R-fractional sets is simple (I thank F. Halter-Koch for spiffying up the following proposition, which I had only shown for Krull rings, and in a more pedestrian manner.).

INTEGER-VALUED POLYNOMIAL CLOSURE

Proposition 2. Let R be an integrally closed domain with quotient field K. If $A \subseteq K$ is not R-fractional then $\mathcal{F}_{R}(A)$ consists only of the constant polynomials with values in R and hence $R-\operatorname{cl}(A)=K$.

Proof. Suppose $f \in \mathcal{F}_{R}(A), \operatorname{deg} f=n>0$. There exists $c \neq 0$ in R such that $c f=g \in R[x], g(x)=c_{n} x^{n}+\ldots+c_{0}, c_{n} \neq 0$. For every $a \in A, g(a) \in R$ implies that $c_{n} a$ is integral over R, and therefore $c_{n} a \in R$. Thus $A \subseteq c_{n}{ }^{-1} R$.

We now turn to R-fractional sets.
Theorem 1. Let A and B be subsets of $d^{-1} R, d \in R$, then
(i) $\mathcal{F}_{R}(A) \subseteq \mathcal{F}_{R}(B) \quad \Longleftrightarrow \quad \forall P \in \mathcal{P} B \subseteq \bar{A}$ in weak $\left\{P^{(n)}\right\}$-adic topology on $d^{-1} R$
(ii) $R-\operatorname{cl}(A)$ is the intersection of all weak $\left\{P^{(n)}\right\}$ - adic closures of $A, P \in \mathcal{P}$.

Proof. In the case where $A, B \subseteq R$, we show that the following are equivalent:

$$
\begin{gather*}
\mathcal{F}_{R}(A) \subseteq \mathcal{F}_{R}(B) \tag{1}\\
\forall P \in \mathcal{P}, \quad B \subseteq \bar{A} \text { in weak } P_{P} \text {-adic topology on } R_{P} \tag{2}\\
\forall P \in \mathcal{P}, \quad B \subseteq \bar{A} \text { in weak }\left\{P^{(n)}\right\} \text {-adic topology on } R . \tag{3}
\end{gather*}
$$

(1 $\Rightarrow 2$) Suppose $B \nsubseteq \bar{A}$ in weak P_{P}-adic topology for some fixed $P \in \mathcal{P}$. Then by Lemma 4 there exists a polynomial $f \in[A][x]$ and an integer n, such that for all $a \in A v_{P}(f(a)) \geq n$, and for some $b \in B v_{P}(f(b))<n$. By the Approximation Theorem for Krull-rings [2, p90], there is a $c \in K$ with $v_{P}(c)=-n$ and $v_{Q}(c) \geq 0$ for all $Q \neq P, Q \in \mathcal{P}$. Then $c \cdot f \in \mathcal{F}_{R_{P}}(A)$, but $c \cdot f \notin \mathcal{F}_{R_{P}}(B)$. Also, for $Q \neq P$, $Q \in \mathcal{P}, c \cdot f \in R_{Q}[x] \subseteq \mathcal{F}_{R_{Q}}(A)$. Therefore, $c \cdot f$ is in $\mathcal{F}_{R}(A)$, but not in $\mathcal{F}_{R}(B)$.
($2 \Rightarrow 1$) By Proposition $1, B \subseteq \bar{A}$ in weak P_{P}-adic topology implies $\mathcal{F}_{R_{P}}(A) \subseteq$ $\mathcal{F}_{R_{P}}(B)$. Using $R=\bigcap_{P \in \mathcal{P}} R_{P}$ we get $\mathcal{F}_{R}(A)=\bigcap_{P \in \mathcal{P}} \mathcal{F}_{R_{P}}(A) \subseteq \bigcap_{P \in \mathcal{P}} \mathcal{F}_{R_{P}}(B)=\mathcal{F}_{R}(B)$.
($2 \Leftrightarrow 3$) Weak $\left\{P^{(n)}\right\}$-adic topology on R is - by definition of $P^{(n)}$ and Lemma 1 exactly what R inherits from weak P_{P}-adic topology on R_{P}.

To reduce the fractional sets case to the subsets of R case we convince ourselves that: (4) $\mathcal{F}_{R}(A) \subseteq \mathcal{F}_{R}(B)$ if and only if $\mathcal{F}_{R}(d A) \subseteq \mathcal{F}_{R}(d B)$ and
(5) For every $P \in \mathcal{P}, B \subseteq \bar{A}$ in weak $\left\{P^{(n)}\right\}$-adic topology on $d^{-1} R$ if and only if $d B \subseteq \overline{d A}$ in weak $\left\{P^{(n)}\right\}$-adic topology on R.

Ad (4) Consider $\varphi_{d}: K[x] \rightarrow K[x], \varphi_{d}(f(x))=f\left(d^{-1} x\right)$. Clearly, $\varphi_{d}\left(\mathcal{F}_{R}(S)\right)=$ $\mathcal{F}_{R}(d S)$ for any set $S \subseteq K$. Because φ_{d} is a permutation of $K[x], \varphi_{d}(S) \subseteq \varphi_{d}(T)$ if and only if $S \subseteq T$ for all $S, T \subseteq K$.
Ad (5) $\psi: d^{-1} R \rightarrow R, \psi(x)=d x$ (as an R-module isomorphism) is a homeomorphism between the \mathcal{J}-adic topologies on $d^{-1} R$ and R for any descending sequence of ideals \mathcal{J}.

The characterization of $R-\operatorname{cl}(A)$ is now an easy consequence of its definition as the unique largest set B with $\mathcal{F}_{R}(A) \subseteq \mathcal{F}_{R}(B)$.

In what follows, we use the fact that $P^{(n)}=P^{n}$ whenever P^{n} is a primary ideal. This is always the case if P is a maximal ideal, but also when P is a principal prime ideal in a unique factorization domain; so that in these cases, weak $\left\{P^{(n)}\right\}$-adic topology is just weak P-adic topology. Also note that weak I-adic topology is equal to I-adic topology whenever $\left[R: I^{n}\right.$] is finite for all n, such that for a height 1 prime ideal P of finite index in a Krull ring, weak $\left\{P^{(n)}\right\}$-adic topology is simply P-adic topology. In the case of a Dedekind ring with finite residue fields, the following result is due to McQuillan [3].

Corollary. Let (R, \mathcal{P}) be a Dedekind ring and its set of maximal ideals or a UFD and its set of principal prime ideals. If A and B are subsets of $d^{-1} R, d \in R$, then

$$
\begin{equation*}
\mathcal{F}_{R}(A) \subseteq \mathcal{F}_{R}(B) \Longleftrightarrow \forall P \in \mathcal{P} B \subseteq \bar{A} \text { in weak } P \text {-adic topology on } d^{-1} R \tag{i}
\end{equation*}
$$

(ii) $\quad R-\operatorname{cl}(A)$ is the intersection of all weak P-adic closures of $A, P \in \mathcal{P}$.

Theorem 2. Let S be a set contained in a subring A of a Krull ring R. Then $\mathcal{F}_{R}(S)=\mathcal{F}_{R}(A)$ if and only if for every height 1 prime ideal P of R
(a) for all $n \in \mathbb{N}$ with $\left[A: P^{(n)} \cap A\right]$ finite, S contains a complete system of residues of $P^{(n)} \cap A$ in A and
(b) for the minimal N (if such exists) with $\left[A: P^{(N)} \cap A\right]$ infinite, S intersects infinitely many residue classes of $P^{(N)} \cap A$ in every residue class of $P^{(N-1)} \cap A$ in A.

Proof. The condition is clearly necessary and sufficient for S to intersect every weak $\left\{P^{(n)}\right\}$-adic neighborhood for all $P \in \mathcal{P}$ of every $a \in A$, that is for A to be contained in the closure of S in weak $\left\{P^{(n)}\right\}$-adic topology for all $P \in \mathcal{P}$.

Corollary 1. If S is a subset of a Krull ring R then $\mathcal{F}_{R}(S)=\mathcal{F}_{R}(R)$ if and only if S contains a complete residue system of P^{n} in R for every $n \in \mathbb{N}$ for every finite index $P \in \mathcal{P}$ and infinitely many elements incongruent mod P for every $P \in \mathcal{P}$ of infinite index.

Proof. Every finite index prime ideal P is maximal, therefore P^{n} is primary and hence $P^{n}=P^{(n)}$ for all n; and the only height 1 prime ideals P in a Krull ring with [$R: P^{(n)}$] infinite for some n are those of infinite index.

Finally, when $A=R$ in the following statement, we retrieve Gilmer's [1] result.

Corollary 2. If R is a Dedekind ring with finite residue fields, A a subring of R and $S \subseteq A$ then $\mathcal{F}_{R}(S)=\mathcal{F}_{R}(A)$ if and only if S contains a complete set of residues of $P^{n} \cap A$ in A for every prime ideal P of R and every $n \in \mathbb{N}$.

References

1. R. Gilmer, Sets That Determine Integer-Valued Polynomials, J. Number Theory 33 (1989), 95-100.
2. H. Matsumura, "Commutative ring theory," Cambridge University Press, 1986.
3. D. L. McQuillan, On a Theorem of R. Gilmer, J. Number Theory 39 (1991), 245-250.
4. A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Mathematik, 149 (1919) 117-124.
5. G. Pólya, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Mathematik, 149 (1919) 97-116.

Institut für Mathematik (C)
Technische Universität Graz
Kopernikusgasse 24
A-8010 Graz, Austria
e-mail: frisch@blah.math.tu-graz.ac.at

