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ABSTRACT. We show that for a wide variety of domains, including all Dedekind
rings with finite residue fields, it is possible to separate any two algebraic elements
a, b of an algebra over the quotient field by integer-valued polynomials (i.e. to
map a and b to 0 and 1, respectively, with a polynomial in K[x] that maps every
element of D to an element of D), provided only that the minimal polynomials of
a and b in K[x] are co-prime (which is obviously necessary).

In contrast to this, it is impossible to separate a, b ∈ D by a n × n-integer-
matrix-valued polynomial (a polynomial in K[x] that maps every n×n matrix over
D to a matrix with entries inD), except in the trivial case where a−b is a unit ofD.
(This is despite the fact that the ring of n× n-integer-matrix-valued polynomials
for any fixed n is non-trivial whenever the ring of integer-valued polynomials is
non-trivial.) 2000 Math. Subj. Classification: Primary 13F20; Secondary 13B25,
11C08, 15A36, 16B99.

1 INTRODUCTION

Definition 1.1. If D is a domain with quotient field K, the ring of integer-valued
polynomials of D is

Int(D) = {f ∈ K[x] | ∀d ∈ D : f(d) ∈ D}.

Rings of integer-valued polynomials have proved remarkably well suited for
interpolation purposes.

Definition 1.2. A domain D is called interpolation domain, if for all n ∈ N, for
all a1, . . . , an ∈ D (distinct) and all b1, . . . , bn ∈ D there exists f ∈ Int(D) with
f(ai) = bi for 1 ≤ i ≤ n.

Interpolation domains have been classified both among Noetherian domains
and among Prüfer domains in [3] (see also Corollary 2.4). In particular, every
Dedekind domain all of whose residue fields are finite is an interpolation domain.

Equivalent to being an interpolation domain is the following point separation
property: for any a, b ∈ D with a 6= b there exists a polynomial f ∈ Int(D) with
f(a) = 0 and f(b) = 1.
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In this note we explore two possible avenues for extending this point separation
property to D-algebras and K-algebras. If D is a domain for which separation of
points in D by polynomials in Int(D) is possible, we ask ourselves
(1) Can elements in an arbitraryK-algebra (for instance the ring of n×nmatrices

with entries in K) be separated by polynomials in Int(D)?
(2) Can elements of D be separated by polynomials in K[x] that map a given

D-algebra (for instance the ring of n×n matrices with entries in D) to itself?
It turns out that the answer to (1) is yes, within reason (the minimal poly-

nomials of the elements to be separated have to be co-prime in K[x]); but (2)
may fail spectacularly for D-algebras with zero-divisors. We will show that it is
impossible to separate points in D by polynomials in K[x] that map Mn(D) (the
D-algebra of n× n matrices with entries in D) to itself, except in trivial cases.

2 SEPARATION OF POINTS IN AN ALGEBRA

The basic connections between separation of points, co-maximality of null-ideals,
and interpolation hold in great generality, so we state them for functions - even
though we are only concerned with polynomials in this paper.

Throughout this paper, every ring or algebra (commutative or not) is assumed
to have an identity element (and every ring homomorphism to satisfy ϕ(1) = 1).
D and K stand for a domain and its quotient field; R denotes a ring (possibly
non-commutative, possibly with zero-divisors).

Notation and Conventions. Let R be a ring and S a set. We say that a ring F is
a ring of functions from S to R if F comes equipped with a ring homomorphism
ψ:F → RS(=

∏
s∈S R) assigning to each element f ∈ F a function (which we also

call f , by abuse of notation).
If (F , ψ) is a ring of functions from S to R and s ∈ S, we call

NF (s) = {f ∈ F | f(s) = 0}

the null-ideal of s in F .
We say that we can separate points in S by functions from F if for all s, t ∈ S

with s 6= t there exists an f ∈ F with f(s) = 0 and f(t) = 1.
We say that we can interpolate arbitrary functions from S to R by functions

in F if for all n ∈ N, for all s1, . . . , sn ∈ S (distinct) and all r1, . . . , rn ∈ R there
exists some f ∈ F with f(si) = ri for 1 ≤ i ≤ n.

Lemma 2.1. Let (F , ψ) be a ring of functions from S to R.
(i) For s, t ∈ S, there exists an f ∈ F with f(s) = 0 and f(t) = 1 if and only if

NF (s) +NF (t) = F .

(ii) To be able to interpolate arbitrary functions from S to R by functions in F
it is necessary and, if F is an R-algebra and ψ an R-algebra homomorphism,
also sufficient, to be able to separate points in S by functions in F .

Proof. (i) is easy; and, ad (ii), separation of points is clearly necessary for inter-
polation. If F is an R-algebra then, given s1, . . . , sn ∈ S which we can mutually
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separate, we have functions fij ∈ F with fij(si) = 1 and fij(sj) = 0, which we
multiply to get a Lagrange interpolation function fi ∈ F with fi(si) = 1 and
fi(sj) = 0 for j 6= i. Then we can use R-linear combinations of the fi to interpo-
late. �

Proposition 2.2. Let D be a domain with quotient field K. D is an interpolation
domain if and only if it has the following property: whenever a1, a2 are algebraic
elements of a K-algebra A, whose minimal polynomials in K[x] are co-prime, there
exists a polynomial p ∈ Int(D) with p(a1) = 0 and p(a2) = 1.

Proof. Assume D is an interpolation domain. Given a1, a2 with co-prime minimal
polynomials f1, f2 ∈ K[x], let c1, c2 be non-zero elements of D such that cifi =
gi ∈ D[x]. There exist polynomials pi ∈ D[x] and a non-zero constant d ∈ D such
that

g1(x)p1(x) + g2(x)p2(x) = d.

Let h(x) ∈ Int(D) with h(0) = 1 and h(d) = 0, and set

p(x) = h(g2(x)p2(x)) = h(d− g1(x)p1(x)),

then p(a1) = 0 and p(a2) = 1.
Conversely, the point separation property forK-algebras specialized to A = K

implies separation of points in D by polynomials in Int(D) which by Lemma 2.1
(ii) implies interpolation of arbitrary functions from D to D by polynomials in
Int(D). �

If D is a Dedekind domain with finite residue fields, the construction of the
point separating integer-valued polynomial h in the preceding proof can be made
fairly explicit, cf. [4].

Corollary 2.3. A domain D with quotient field K is an interpolation domain if
and only if for any f1, f2 ∈ K[x] with

K[x]f1(x) +K[x]f2(x) = K[x]

it follows that

(K[x]f1(x) ∩ Int(D)) + (K[x]f2(x) ∩ Int(D)) = Int(D).

Proof. In view of Lemma 2.1 and Proposition 2.2, all that remains to show is that
every two non-constant monic polynomials inK[x] occur as minimal polynomials of
two elements of the sameK-algebra. This can be seen by looking at the companion
matrices of the polynomials in question, bringing the smaller matrix up to the size
of the larger matrix by padding with zeros at the right and bottom. �

Recalling the characterization of interpolation domains among Noetherian
domains from [3] (Theorem 2.4.), we obtain:

Corollary 2.4. Let D be a Noetherian domain with quotient field K. Then the
following are equivalent:
(1) D is an interpolation domain
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(2) whenever a1, a2 are algebraic elements of a K-algebra A whose minimal poly-
nomials in K[x] are co-prime, there exists a polynomial p ∈ Int(D) with
p(a1) = 0 and p(a2) = 1

(3) whenever I, J are ideals of K[x] with I + J = K[x] then

(I ∩ Int(D)) + (J ∩ Int(D)) = Int(D)

(4) D is one-dimensional with finite residue fields and locally unibranched (the
last condition meaning that the integral closure of every localization at a
prime ideal is again local).

3 INTEGER-MATRIX-VALUED POLYNOMIALS

Definition 3.1. We denote by Mintn(D) the ring of polynomials in K[x] that map
n× n matrices with entries in D to matrices with entries in D:

Mintn(D) = {f ∈ K[x] | ∀A ∈Mn(D) : f(A) ∈Mn(D)}.

Clearly,

K[x] ⊇ Int(D) ⊇ Mint2(D) ⊇ Mint3(D) ⊇ . . . ⊇ D[x],

and, as Lemma 3.4 below shows,
∞⋂

n=1
Mintn(D) = D[x].

Example 3.2. One may ask if Mintn(D) is not often trivial, in the sense of
Mintn(D) = D[x]. The answer is, for Noetherian D at least: not more often
than Int(D) is trivial. (This can be shown by combining the proof of Theorem
I.3.14 of [2] with Lemma 3.4 below). It follows immediately from Lemma 3.4 that
Mintn(D) 6= D[x] (for any n ≥ 1) whenever D has a proper principal ideal of finite
index. For example,

x6 + x5 + x3 + x2

2
is in Mint2(Z) \Mint3(Z).

(The residue class of x6 + x5 + x3 + x2 in Z2[x] is the least common multiple
of all monic polynomials in Z2[x] of degree 2.)

When investigating Mintn(D), it is useful to know in what cases the null
ideal of a matrix A ∈ Mn(R) in the polynomial ring R[x] is principal, not just
for R = D, but also for residue class rings R = D/I. If D is a domain then
ND[x](A) = {f ∈ D[x] | f(A) = 0} is principal for every matrix A ∈Mn(D) if and
only if D is integrally closed [5]. But even for the most mundane commutative ring
R we know that the null ideals in R[x] of some matrices are principal. (Thanks to
Gabriel Picavet for pointing this out):
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Lemma 3.3. Let R be a commutative ring, f ∈ R[x] a monic polynomial and
A ∈Mn(R) the companion matrix of f . Then NR[x](A) = f(x)R[x].

Proof. By a theorem of McCoy ([1], Theorem 7.31) the null ideal in R[x] of a
matrix A ∈ Mn(R) is (Fn :R[x] Fn−1), where Fk denotes the ideal generated in
R[x] by the k × k minors of xIn − A (In the n × n identity matrix). For any A,
Fn = cA(x)R[x] (cA the characteristic polynomial of A); and if A is the companion
matrix of a polynomial, then one of the (n− 1)× (n− 1) minors of xIn − A is 1,
such that in this case the null ideal of A is cA(x)R[x] = f(x)R[x]. �

Lemma 3.4. Let D be a domain and f(x) = g(x)/c, g ∈ D[x], c ∈ D \ {0}. Then
f ∈ Mintn(D) if and only if g is divisible modulo cD[x] by all monic polynomials
in D[x] of degree n.

Proof. Suppose f ∈ Mintn(D). Let ḡ denote the residue class of g in (D/cD)[x].
Then ḡ maps every matrix in Mn(D/cD) to the zero-matrix. In particular, this
holds for all companion matrices of monic polynomials of degree n. Therfore ḡ is
divisible in (D/cD)[x] by all monic polynomials of degree n.

Conversely, this condition suffices for f ∈ Mintn(D), because it means that
g is divisible modulo cD[x] by the characteristic polynomial of every matrix in
Mn(D), and therefore maps every matrix in Mn(D) to a matrix in Mn(cD). �

We are now ready to show that the rings Mintn(D) are as unsuitable as can
be for separation of points. For n > 1, Mintn(D) cannot even separate elements
a, b ∈ D, except in the trivial case when a− b is a unit and they can be separated
by the polynomial (x− b)/(a− b) ∈ D[x].

Theorem 3.5. Let D be a domain and a, b ∈ D. If there exists a polynomial
f ∈ Mint2(D) with f(a) = 1 and f(b) = 0 then a− b is a unit of D.

Proof. By linear substitution we can reduce to the case a = 0. Let f ∈ Mint2(D)
with f(0) = 1 and f(b) = 0. We write f as f(x) = g(x)/c with g ∈ D[x] and c 6= 0
in D. It follows that c = g(0) and g(x) = (x− b)h(x) with h ∈ D[x].

By Lemma 3.4, g is divisible modulo cD[x] by all monic polynomials in D[x]
of degree 2, in particular by (x− b)x.

In (D/cD)[x] we have, for some k ∈ (D/cD)[x],

(x− b)xk(x) = ḡ(x) = (x− b)h̄(x)

and we can cancel (x − b) which, being monic, is certainly not a zero-divisor in
(D/cD)[x]. This shows that h̄, the residue class of h in (D/cD)[x], is divisible by
x. Therefore, in D[x], the constant coefficient of h is divisible by c, say h(0) = dc.
Looking at the constant coefficient of g we have c = g(0) = −bh(0) = −bdc.
Cancelling c 6= 0 proves −b to be a unit of D. �
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Corrigendum. After publication I discovered a slight mistake in the proof of
Corollary 2.3. The corollary itself is correct. Here’s how to fix the proof: Given
two non-constant monic polynomials f and g in K[x], we want a K-algebra A
that has two elements a and b whose minimal polynomials are f and g. The
matrices given in the paper won’t work. What does work is: let Cf and Cg be the
companion matrices of f and g, let A = Mn(K), with n = lcm(deg f,deg g) and
let a and b be block diagonal matrices, such that the blocks of a are all equal to
Cf and the blocks of b are all equal to Cg.
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