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Abstract. In this work, we present descriptions of prime ideals and in particular of maximal
ideals in products R =

∏
Dλ of families (Dλ)λ∈Λ of commutative rings. We show that every

maximal ideal is induced by an ultrafilter on the Boolean algebra
∏

P(max(Dλ)). If every Dλ

is in a certain class of rings including finite character domains and one-dimensional domains,
then this leads to a characterization of the maximal ideals of R. If every Dλ is a Prüfer domain,
all prime ideals of R are described. Moreover, we give an example of a (optionally non-local or
local) Prüfer domain such that every non-zero prime ideal is of infinite height.

1. Introduction & preliminaries

The study of prime ideals is a central topic in commutative ring theory. It started more than a
century ago when people noticed that in rings of integers in algebraic number fields elements do
not necessarily factor uniquely into products of prime elements. Kummer’s idea of introducing -
what he called - "ideal numbers" which should again factor uniquely was formalized by Dedekind:
He was the first to give the definition of an ideal. The surprising fact that ideals in rings of in-
tegers indeed factor uniquely into prime ideals was a starting point of modern algebraic number
theory and ring theory.
Further problems from algebraic geometry and algebraic number theory were the motivation for
investigating commutative rings in a more general framework. Since then, prime ideals have
turned out to be very useful, because they reflect many algebraic and arithmetical properties of
a ring. For instance, in broad settings prime ideals are linked to the theory of divisors and to
valuation theory in commutative rings.
From a categorical point of view, the product is one of the most natural constructions within
the class of commutative rings. Moreover, it is a practical source of examples and counterex-
amples and it contains subrings that are themselves central objects of interest, such as rings of
polynomials, rings of integer-valued polynomials and rings of continuous functions. For further
reference, see the text books by Cahen and Chabert [1] on integer-valued polynomials and by
Gillman and Jerison [14] on rings of continuous functions.
Prime ideals in products of commutative rings have been studied over the last thirty years.
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While the case of products over finite index sets is an easy exercise, it is still unclear in gen-
eral how prime ideals in infinite products look like. To make things precise, let Λ be a set and
(Dλ)λ∈Λ a family of commutative rings. Throughout this work, we denote by R =

∏
λ∈ΛDλ

the product of the rings Dλ and by B =
∏
λ∈Λ P(max(Dλ)) the product of the Boolean algebras

(P(max(Dλ)),∩,∪), where P(M) denotes the power set of a set M and max(D) is the set of
all maximal ideals of a commutative ring D. Clearly, B is a Boolean algebra with least element
0B = (∅)λ∈Λ. We denote elements a ∈ R by a = (aλ) = (aλ)λ∈Λ and elements Y ∈ B by
Y = (Yλ) = (Yλ)λ∈Λ.
In 1991, Levy, Loustaunau and Shapiro [20] showed that if every Dλ is the ring of integers Z, then
the maximal ideals of R correspond to ultrafilters on B. Moreover, in this situation, they gave a
description of all prime ideals of R and investigated the order structure of chains inside spec(R).
O’Donnell [25] generalized some of these results to maximal ideals in products of commutative
rings and characterized certain classes of prime ideals in products of Dedekind domains. These
considerations have been carried on by Olberding, Saydam and Shapiro in [26], [27] and [28],
where prime ideals in ultraproducts of commutative rings are explored in very broad settings.
Our aim is to extend the initial approach by Levy, Loustaunau and Shapiro to more general situ-
ations, and thereby recover and strengthen many results mentioned above. To give one example,
Theorem 3.3 of our work describes all prime ideals of arbitrary products of Prüfer domains. The
concept of a Prüfer domain is a common generalization of those of a Dedekind domain (including
rings of integers in algebraic number fields) to the non-Noetherian setting and of a valuation
domain to the non-local setting. Moreover, Prüfer domains are important objects in commuta-
tive ring theory and have been studied intensively. For a general introduction, see [15, Chapter
IV]. The book by Fontana, Huckaba and Papick [10] contains collected topics on Prüfer domains.

Ultrafilters on Boolean algebras. For an introduction to Boolean algebras, see [19]. We
tread ultrafilters in two different ways, that nevertheless can be summarized under one concept:

(1) Let (B,∧,∨) be a Boolean algebra. We denote by 0 the minimal element of B, by ¬ the
complement operation on B and by ≤ the canonical order relation on B. A non-empty
subset U of B is called a filter in B if it satisfies the following conditions:
(i) 0 /∈ U .
(ii) For all X,Y ∈ U , it follows that X ∧ Y ∈ U .
(iii) For all Y ∈ U and all Z ∈ B, we have that Y ≤ Z implies Z ∈ U .
A filter U in B is called an ultrafilter in B if it satisfies in addition
(iv) For all Y ∈ B, we have that either Y ∈ U or ¬Y ∈ U .

(2) If (B,∧,∨) = (P(Λ),∩,∪), then we have 0 = ∅ and ¬A = Λ \A for every A ⊆ Λ, and ≤
equals set-theoretic inclusion. Moreover, we call an ultrafilter U in P(Λ) an ultrafilter on
Λ (as it is usual) and the above properties translate as follows:
(i) ∅ /∈ U .
(ii) For all A,B ∈ U , it follows that A ∩B ∈ U .
(iii) For all B ∈ U and all C ⊆ Λ, we have that B ⊆ C implies C ∈ U .
(iv) For all A ⊆ Λ, we have that either A ∈ U or Λ \A ∈ U .

(3) If B = B =
∏
λ∈Λ P(max(Dλ)), then for all Y,Z ∈ B, we have that Y ∧Z = (Yλ∩Zλ)λ∈Λ,

Y ∨Z = (Yλ ∪Zλ)λ∈Λ, ¬Y = (max(Dλ) \ Yλ)λ∈Λ and 0 = 0B = (∅)λ∈Λ. Furthermore, we
have Y ≤ Z if and only if Yλ ⊆ Zλ for all λ ∈ Λ.

(4) A non-empty subset M ⊆ B is said to have the finite intersection property, if for all
Y1, . . . , Yn ∈ M we have that Y1 ∧ . . . ∧ Yn 6= 0. If M ⊆ B has the finite intersection
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property, then F = {F ∈ B | ∃Y1, . . . , Yn ∈M Y1∧ . . .∧Yn ≤ F} can easily be seen to be
a filter in B containing M . Moreover, it holds that every filter in B is contained in some
ultrafilter in B. This follows from the fact that ultrafilters in B are exactly the maximal
elements with respect to set-theoretical inclusion in the set of all filters on B.

(5) It is not hard to see that if U is an ultrafilter in B, then for all X,Y ∈ B, if X ∨ Y ∈ U ,
then X ∈ U or Y ∈ U .

The above facts will be used throughout this work without any additional reference.

The Skolem-property. A subring T of R =
∏
Dλ is said to have the Skolem-property if for all

a(1), . . . , a(n) ∈ T such that the ideal (a(1)
λ , . . . , a

(n)
λ ) is equal to Dλ for all λ ∈ Λ, it follows that

(a(1), . . . , a(n)) = T .

The Skolem-property introduced here is a generalization of the particular case where T =
Int(D) = {f ∈ K[x] | f(D) ⊆ D} ⊆

∏
D, where D is a domain with quotient field K. For a

deeper insight into this circle of ideas, see [2], [3], [4], [5], [13], [21] and [22].
In section 2, it is shown that T having the Skolem-property is equivalent to every maximal ideal
of T being induced by an ultrafilter in B. Note that R always has the Skolem-property. Moreover,
the ultrafilters in B inducing maximal ideals of R can be characterized if every Dλ is in the class
of commutative rings D satisfying the following property, which we call (+):
For all r ∈ D and a ∈ D \{0} there exists d ∈ D such that d is in every maximal ideal containing
a but not containing r and d is in no maximal ideal containing r.
It is shown that finite character domains and one-dimensional domains satisfy (+).
We also investigate the case where every ultrafilter on B induces a maximal ideal of R. It turns
out that this property has strong connections to the topological assumption of proconstructabil-
ity on the maximal spectra of the component rings Dλ.
Further considerations in section 2 describe the minimal prime ideals of subrings T ⊆ R. In par-
ticular, we present a proof of the fact that every prime ideal of a product of domains R contains
exactly one minimal prime ideal.

First-order sentences and ultraproducts. In section 3, we make use of some classical terms
of model theory including first-order formulas and ultraproducts, which we only consider in the
special case of the language of rings including +, ·, 0 and 1. Roughly speaking, a first order
sentence in this language is a formula only using =, +, ·, 0, 1, variables and logical symbols such
as quantifiers and sentential connectives, but in such a way that variables only range over the
elements of the ring.
If F is an ultrafilter on Λ, we denote by R∗ =

∏F
λ∈ΛDλ the ultraproduct of the Dλ, which is the

ring that is constructed by identifying elements r, s ∈ R with the property that {λ ∈ Λ | rλ = sλ}
is in F .
Ultrafilters and ultraproducts are playing an increasingly important role in commutative ring
theory, for instance, in the work of Olberding (cf. [26], [27], [28]), Fontana and Loper (cf. [8],
[9], [12], [23, section 5], [24]), and Schoutens (cf. [29], [30]).
We will extensively use the following fundamental theorem for ultraproducts [6, Theorem 4.1.9]:

Theorem of Łoś. A first order sentence ϕ is satisfied by R∗ if and only if the set of all λ ∈ Λ
such that Dλ satisfies ϕ is in F .
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Using the Theorem of Łoś, it follows in particular that, if every Dλ is an integral domain (respec-
tively a field) with quotient field Kλ, then so is R∗, and it can be easily seen that its quotient
field K∗ is isomorphic to the ultraproduct of the Kλ. For a more precise and general treatment
of the introduced concepts, see [6].

In section 3, we apply the fact that being a Prüfer domain is preserved by ultraproducts [26,
Proposition 2.2]. Knowing this, we are able to describe the valuation on the quotient field K∗ of
an ultraproduct R∗ of Prüfer domains Dλ having as a valuation ring the localization R∗M at a
maximal ideal M ⊆ R∗. By a common generalization of concepts introduced in [20] and [27], we
are then able to describe all prime ideals in R when each Dλ is a Prüfer domain. This leads us to
the fact that (in the same situation) every non-minimal prime ideal of R contained in a certain
type of maximal ideal (that always exists) is of infinite height. Finally, we give an example of a
Prüfer domain such that every non-zero prime ideal is of infinite height, which can be chosen to
be either local (so a valuation domain) or non-local.

2. Maximal ideals and minimal prime ideals

Describing all maximal ideals. Let D be a commutative ring. For an ideal I ⊆ D, we denote
by V (I) the set of all maximal ideals of D containing I and by D(I) = max(D) \ V (I). If
I = (a1, . . . , an) is finitely generated, we write V (I) = V (a1, . . . , an).
For an element a ∈ R =

∏
Dλ, we set S(a) = (V (aλ))λ∈Λ ∈ B =

∏
P(max(Dλ)). Moreover, if U

is a filter in B and T ⊆ R is a subring, we define
(U)T = {a ∈ T | S(a) ∈ U},

where T is omitted whenever the context determines it.

Lemma 2.1. Let T ⊆ R be a subring, a, b ∈ R and U be a filter in B. Then the following
assertions hold:

(1) S(a) ∧ S(b) = (V (aλ, bλ))λ∈Λ.
(2) S(a) ∨ S(b) = S(ab).
(3) (U) is an ideal of T .
(4) If U is an ultrafilter in B, then (U) is a prime ideal of T .

Proof. (1), (2) and (3) follow immediately from the relevant definitions.
For the proof of (4), let U be an ultrafilter in B and note that 1 /∈ (U), because S(1) = 0B /∈ U .
If now a, b ∈ T such that ab ∈ (U), then by (2) we have that S(a) ∨ S(b) = S(ab) ∈ U . Since U
is an ultrafilter, it follows that S(a) ∈ U or S(b) ∈ U and therefore a ∈ (U) or b ∈ (U). �

Proposition 2.2. For a subring T ⊆ R =
∏
λ∈ΛDλ the following assertions are equivalent:

(a) T has the Skolem-property.
(b) For every proper ideal A ⊆ T the set {S(a) | a ∈ A} ⊆ B satisfies the finite intersection

property.
(c) Every proper ideal of T is contained in an ideal of the form (U), where U is an ultrafilter

in B.
(d) Every maximal ideal of T is of the form (U) for some ultrafilter U in B.

Proof. "(a) ⇒ (b)": Let A ⊆ T be a proper ideal and a(1), . . . , a(n) ∈ A. Then, by Lemma
2.1(1), it follows that S(a(1)) ∧ . . . ∧ S(a(n)) = (V (a(1)

λ , . . . , a
(n)
λ )). Assume to the contrary that
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V (a(1)
λ , . . . , a

(n)
λ ) = ∅ for all λ ∈ Λ. Then (a(1)

λ , . . . , a
(n)
λ ) = Dλ for all λ ∈ Λ and by the Skolem-

property we have that A ⊇ (a(1), . . . , a(n)) = T , which is a contradiction.
"(b) ⇒ (c)": Let A ⊆ T be a proper ideal. Then, by (b), we can pick an ultrafilter U in B such
that {S(a) | a ∈ A} ⊆ U . Now it follows by definition that A ⊆ (U).
"(c) ⇒ (d)": This is clear.
"(d) ⇒ (a)": Let a(1), . . . , a(n) ∈ T such that A = (a(1), . . . , a(n)) is a proper ideal of T . Let
U be an ultrafilter in B such that A ⊆ (U). We want to show that (a(1)

λ , . . . , a
(n)
λ ) is proper

for some λ ∈ Λ. Assume to contrary that (a(1)
λ , . . . , a

(n)
λ ) = Dλ for all λ ∈ Λ. Then 0B =

(V (a(1)
λ , . . . , a

(n)
λ )) = S(a(1)) ∧ . . . ∧ S(a(n)) ∈ U , which is a contradiction. �

Corollary 2.3. Let (Dλ)λ∈Λ be a family of commutative rings. Then every maximal ideal of
R =

∏
Dλ is of the form (U) for some ultrafilter U in B.

Characterizing ultrafilters that induce maximal ideals.

Definition 2.4. A ring D is said to satisfy property (+) if for all r ∈ D and for all non-zero
a ∈ D, there exists d ∈ D such that d is in every maximal ideal of D containing a but not
containing r and d is in no maximal ideal of D containing r.

We will see that property (+) gives us a setting, where we can characterize the ultrafilters in
B that induce maximal ideals of R.
We first give some easy equivalences to property (+), which will help us to give examples of classes
of domains satisfying and not satisfying it. To do this, we need the following fact, which follows
immediately from [7, Corollary 3]: If I is an ideal in a ring D and r ∈ D, then I ⊆

⋃
Q∈V (r)Q

implies that I ⊆ Q for some Q ∈ V (r).

Lemma 2.5. Let D be a ring. Then the following assertions are equivalent:
(a) D satisfies property (+).
(b) For all r ∈ D, a ∈ D \ {0} and Q ∈ V (r) we have that (

⋂
M∈V (a)\V (r)M) \Q 6= ∅.

(c) For all r ∈ D, a ∈ D\{0} and for all maximal idealsQ ⊆ D we have that
⋂
M∈V (a)\V (r)M ⊆

Q implies that there exists some M ∈ V (a) \ V (r) such that M ⊆ Q.
(d) For all r ∈ D, a ∈ D\{0} and for all maximal idealsQ ⊆ D we have that

⋂
M∈V (a)\V (r)M ⊆

Q implies that Q ∈ D(r).
(e) For all r ∈ D and for all non-zero a ∈ D, there exists d ∈ D such that the containment

V (a) ∩D(r) ⊆ V (d) ⊆ D(r) holds.

Proof. The equivalence of (b), (c) and (d) is clear. Also (b) follows immediately from (a).
Moreover, (a) and (e) are trivially equivalent. It now suffices to prove "(b)⇒ (a)". So assume that
(a) does not hold. Then

⋂
M∈V (a)\V (r)M ⊆

⋃
Q∈V (r)Q for some r ∈ D and some non-zero a ∈ D.

By the prime-avoidance-like statement before the lemma, it follows that
⋂
M∈V (a)\V (r)M ⊆ Q

for some Q ∈ V (r), which contradicts (b). �

Example 2.6. If D is a domain of finite character, i.e. every a ∈ D \ {0} is contained in only
finitely many maximal ideals of D, then it is immediate by (c) in Lemma 2.5 and the fact that
every maximal ideal Q ⊆ D is prime that D satisfies (+).
In particular, one-dimensional Noetherian domains (and therefore also principal ideal domains)
satisfy (+).
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In the case that D does not have finite character, the situation is much more involved, as we
want to illustrate by the next example. Nevertheless, Proposition 2.8 will enlarge the class of
rings of which we know that they satisfy (+) into an important direction.

Example 2.7. (1) If K is a field and n ≥ 2, then the polynomial ring in n indeterminates
over K is a Noetherian factorial domain of Krull dimension n that is not Prüfer and does
not satisfy property (+).

(2) The polynomial ring Z[x] is a two-dimensional Noetherian factorial domain that is not
Prüfer and does not satisfy property (+).

(3) The ring of integer-valued polynomials Int(Z) is a two-dimensional non-Noetherian Prüfer
domain not satisfying (+).

Proposition 2.8. Every one-dimension domain satisfies (+).

Proof. Let D be one-dimensional, r ∈ D and a ∈ D \ {0}. Note that Z =
⋂
M∈V (a)∩D(r)M is an

intersection of prime ideals with a ∈ Z. Therefore Z is a non-zero radical ideal of D. If Z = D,
the assertion is trivial, so assume that Z is a proper ideal, which implies that D/Z is a reduced
zero-dimensional ring (i.e. von Neumann regular).
Since (r + Z) is a principal ideal of D/Z, there exists e ∈ D such that e + Z is idempotent in
D/Z and (r+Z) = (e+Z). We define d = 1− e and claim that d is the right choice for property
(+).
Let M ∈ V (a)∩D(r). Then r /∈M and this implies r+Z /∈M/Z. (For if we had r+Z ∈M/Z,
then we could pick m ∈ M such that r + Z = m + Z. But then r −m ∈ Z ⊆ M , which would
imply r ∈M , a contradiction.) It follows that e+ Z /∈M/Z and therefore d+ Z ∈M/Z. With
the same argument as before, we get d ∈M , so M ∈ V (d).
Now let M ∈ V (d). Then d ∈ M , so d + Z ∈ M/Z. Therefore e + Z /∈ M/Z, which implies
r + Z /∈M/Z and hence r /∈M . It follows that M ∈ D(r). �

Note that Proposition 2.8 gives also rise to examples of domains satisfying (+) and not being
of finite character. For instance, let Z̄ be the integral closure of Z in some algebraic closure of
Q. Then Z̄ is a one-dimensional Prüfer domain but it is not of finite character. Indeed, every
prime number p ∈ Z is contained in infinitely many maximal ideals of Z̄.
We now turn back to the investigation of maximal ideals of R =

∏
Dλ and ultrafilters in B =∏

P(max(Dλ)).

Proposition 2.9. Let (Dλ)λ∈Λ be a family of rings satisfying (+) and let U be an ultrafilter in
B containing an element of the form (V (aλ))λ∈Λ, where aλ ∈ Dλ \ {0} for all λ ∈ Λ. Then (U)
is a maximal ideal of R =

∏
Dλ.

Proof. Let r ∈ R \ (U) and let (aλ)λ∈Λ be a family such that aλ ∈ Dλ \ {0} for all λ ∈ Λ
and (V (aλ))λ∈Λ ∈ U . Since every Dλ satisfies (+), for each λ ∈ Λ we can pick some dλ ∈ Dλ

such that V (aλ) ∩ D(rλ) ⊆ V (dλ) ⊆ D(rλ) and define d = (dλ)λ∈Λ. Since r /∈ (U), it follows
that S(r) /∈ U and therefore (D(rλ)) = ¬S(r) ∈ U , because U is an ultrafilter. Hence we have
S(d) ≥ S(a) ∧ (D(rλ)) ∈ U , which implies that S(d) ∈ U and therefore d ∈ (U). On the other
hand, we have (dλ, rλ) = Dλ for all λ ∈ Λ. By the Skolem-property of R it follows that (d, r) = R
and therefore (U) is maximal. �

We now introduce two new kinds of ideals. The first one will also be the prototype of minimal
prime ideals in subrings T ⊆ R. Let F be an ultrafilter on Λ and T ⊆ R be a subring. Then for
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an element x ∈ T we set z(x) = {λ ∈ Λ | xλ = 0} and we define
(0)TF = {x ∈ T | z(x) ∈ F}.

Moreover, for a family M = (Mλ)λ∈Λ, where Mλ ∈ max(Dλ) for every λ ∈ Λ, we set zM (x) =
{λ ∈ Λ | xλ ∈Mλ} for an element x ∈ T and define

MT
F = {x ∈ T | zM (x) ∈ F}.

We write (0)TF = (0)F and MT
F = MF if the choice of T is clear from the context.

Lemma 2.10. If T ⊆ R is a subring such that there exists c ∈ T where cλ ∈ Dλ is a non-zero
non-unit for every λ ∈ Λ and F is an ultrafilter on Λ, then (0)F is a non-maximal ideal of T .

Proof. It can be easily seen that (0)F is an ideal of T . Now let c ∈ T as in the assumption of the
lemma and let M = (Mλ) be a family such that each Mλ is a maximal ideal of Dλ containing
cλ. Clearly, MF ⊆ T is a proper ideal with (0)F ⊆ MF and c ∈ MF \ (0)F . Therefore (0)F is
not maximal. �

Proposition 2.11. Let T ⊆ R =
∏
λ∈ΛDλ be a subring with the property that there exists

c ∈ T such that cλ ∈ Dλ is a non-zero non-unit for every λ ∈ Λ, where every Dλ is an integral
domain. Moreover, let U be an ultrafilter in B such that (U) ⊆ T is a maximal ideal. Then U
contains an element of the form (V (aλ))λ∈Λ, where aλ ∈ Dλ \ {0} for all λ ∈ Λ.

Proof. First, note that {z(x) | x ∈ (U)} does not have the finite intersection property. For
otherwise there would exist an ultrafilter F on Λ such that (U) ⊆ (0)F , which would imply that
(0)F is maximal. A contradiction to Lemma 2.10.
So we can pick x(1), . . . , x(n) ∈ (U) such that z(x(1))∩ . . .∩z(x(n)) = ∅. Therefore for all λ ∈ Λ we
can choose iλ ∈ {1, . . . , n} such that x(iλ)

λ 6= 0 and therefore aλ := cλ ·x
(iλ)
λ is a non-zero non-unit

of Dλ. If we now set a = (aλ)λ∈Λ, then (V (aλ)) = (V (cλ · x
(iλ)
λ )) ≥ (V (cλ · x

(1)
λ , . . . , cλ · x

(n)
λ )) =

S(c · x(1)) ∧ . . . ∧ S(c · x(n)) ∈ U . Therefore (V (aλ)) ∈ U , which we wanted to show. �

Corollary 2.12. Let (Dλ)λ∈Λ be a family of domains not being fields satisfying property (+) and
let R =

∏
λ∈ΛDλ. Then the maximal ideals of R are exactly the ideals of the form (U), where

U is an ultrafilter in the Boolean algebra B =
∏
λ∈Λ P(max(Dλ)) containing an element of the

form (V (aλ))λ∈Λ such that aλ ∈ Dλ \ {0} for all λ ∈ Λ.

The finite character case. If every Dλ is a domain of finite character (i.e. every non-zero
element is only contained in finitely many maximal ideals) and T ⊆ R is a subring such that there
exists some c ∈ T such that every cλ ∈ Dλ is a non-zero non-unit, then it follows immediately
from Proposition 2.11 that if (U) ⊆ T is a maximal ideal, then the ultrafilter U must contain an
element Y = (Yλ) such that every Yλ is finite.
The next result gives us a statement analogous to Proposition 2.9 in the finite character case.

Proposition 2.13. Let (Dλ)λ∈Λ be a family of rings such that for every λ ∈ Λ and for every
rλ ∈ Dλ we have that rλ is contained either in all maximal ideals of Dλ or in only finitely many
of them. Let U be an ultrafilter in B containing an element Y = (Yλ)λ∈Λ such that Yλ is finite
for every λ ∈ Λ. Then (U) is a maximal ideal of R =

∏
λ∈ΛDλ.

Proof. Let r ∈ R \ (U). Define a = (aλ) such that
(1) aλ ∈ P for all P ∈ D(rλ) ∩ Yλ and
(2) aλ /∈ Q for all Q ∈ V (rλ).
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If, for λ ∈ Λ, we have that V (rλ) is finite, then this is possible by the Chinese Remainder
Theorem. If V (rλ) = max(Dλ), then this works by setting aλ = 1. By (2) and the Skolem-
property of R, it follows that (a, r) = R.
To see that a ∈ (U), note that S(r) /∈ U and therefore (D(rλ)) = ¬S(r) ∈ U . Therefore
S(a) ≥ (D(rλ)) ∧ Y ∈ U and hence a ∈ (U). �

Corollary 2.14. Let (Dλ)λ∈Λ be a family of domains of finite character not being fields and let
R =

∏
λ∈ΛDλ. Then the maximal ideals of R are exactly the ideals of the form (U), where U is

an ultrafilter in the Boolean algebra B =
∏
λ∈Λ P(max(Dλ)) containing an element Y = (Yλ)λ∈Λ

such that Yλ is finite for all λ ∈ Λ.
Proconstructability of the maximal spectra. We now want to investigate the connection
between a certain topological property of the max(Dλ) called proconstructability and the situa-
tion that for every ultrafilter U in B the ideal (U) ⊆ R =

∏
Dλ is maximal.

If D is a commutative ring, then the constructible topology on spec(D) is a topology finer than
the Zariski topology on spec(D) making it a compact Haussdorf space and preserving certain
important properties. The easiest way to describe the closed sets in the constructible topology
(which are called proconstructible) uses the fact that it is equal to the so-called ultrafilter topology
on spec(D): A subset X ⊆ spec(D) is proconstructible if and only if for each ultrafilter F on X
the prime ideal XF = {r ∈ D | V (r)∩X ∈ F} of D is in X, where V (r) = {P ∈ spec(D) | r ∈ P}.
If we consider the subspace X = max(D) of spec(D), then this property translates as follows:
X = max(D) is proconstructible if and only if XF = {r ∈ D | V (r) ∈ F} is maximal for each
ultrafilter F on max(D).
Proposition 2.15. If (U) is a maximal ideal of R =

∏
λ∈ΛDλ for every ultrafilter U in B, then

max(Dλ) is proconstructible in spec(Dλ) for every λ ∈ Λ.
Proof. Fix λ ∈ Λ and set X = max(Dλ). As noted before the proposition, it suffices to show
that XF = {r ∈ Dλ | V (r) ∈ F} is in X for every ultrafilter F on X. So let F be an ultrafilter
on X. For every r ∈ Dλ consider the element Y (r) ∈ B defined by setting

Y (r)
µ = D(r) if µ = λ

Y (r)
µ = ∅ if µ 6= λ

for µ ∈ Λ.
Now consider the subset G = {Y (r) | r ∈ Dλ\XF } of B. Since F is an ultrafilter on X = max(Dλ)
and V (r) /∈ F for every r ∈ Dλ \XF , it follows that for all r1, . . . , rn ∈ Dλ \XF we have that
D(r1)∩ . . .∩D(rn) ∈ F . Hence G has the finite intersection property as a subset of the Boolean
algebra B. Let U be an ultrafilter in B such that G ⊆ U .
By assumption (U) ⊆ R is a maximal ideal and it can easily be seen that it contains the kernel
of the projection map p : R → Dλ. Indeed, if r ∈ R such that rλ = 0, then S(r) ≥ Y (1) ∈ U . It
follows that p((U)) ⊆ Dλ is a maximal ideal.
Now we claim that Dλ \ XF ⊆ Dλ \ p((U)). If we know this, it follows that p((U)) ⊆ XF and
therefore XF is maximal, which is what we wanted to show.
To prove the claim, assume to the contrary that there exists α ∈ Dλ \XF such that α = p(f) for
some f ∈ (U), i.e. α = fλ. Since S(f) and Y (α) are in U , it follows that 0B = S(f) ∧ Y (α) ∈ U ,
which is a contradiction. �

Definition 2.16. A commutative ring D is said to satisfy property (++), if for all r ∈ D there
exists some d ∈ D such that D(r) = V (d).
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Note that if a ring D satisfies (++), then it also satisfies (+). Indeed, given r ∈ D and
a ∈ D \ {0}, let d ∈ D such that D(r) = V (d). Then V (a) ∩ D(r) ⊆ D(r) = V (d) ⊆ D(r). So
D satisfies (+) by Lemma 2.5.
Before we will see examples of rings with property (++), we want to illustrate how we can apply
it to our description of maximal ideals of the product ring R.

Lemma 2.17. If (Dλ)λ∈Λ is a family of commutative rings satisfying (++), then (U) is a maximal
ideal of R =

∏
λ∈ΛDλ for every ultrafilter U in B.

Proof. Let U be an ultrafilter in B and choose r ∈ R \ (U). Using property (++), let d ∈ R
such that D(rλ) = V (dλ) for every λ ∈ Λ. Then, by the Skolem-property of R, we have that
(r, d) = R. Moreover, since S(r) /∈ U , we have that S(d) = (V (dλ)) = (D(rλ)) = ¬S(r) ∈ U ,
hence d ∈ (U). This shows that (U) is maximal. �

For a subset X ⊆ spec(D), where D is a commutative ring, we denote by Clzar(X) the closure
of X with respect to the Zariski topology, by Clcons(X) the closure of X with respect to the
constructible topology and by

Xsp = {P ∈ spec(D) | P ⊇ Q for some Q ∈ X}
the specialization of X.
It is shown in [11, Lemma 1.1] that Clzar(X) = (Clcons(X))sp for every X ⊆ spec(D). From this
it follow easily that max(D) is proconstructible in spec(D) if and only if it is closed with respect
to the Zariski topology on spec(D).

Proposition 2.18. Let D be a commutative ring such that max(D) is proconstructible in
spec(D). Then D satisfies property (++).

Proof. Let J denote the Jacobson radical of D. Since max(D) is proconstructible, it follows by
the remarks before the proposition that max(D) is closed with respect to the Zariski topology.
In this case we have that {P ∈ spec(D) | J ⊆ P} = max(D) and therefore D′ := D/J is a
zero-dimensional reduced ring.
Let r ∈ D. Since D′ is zero-dimensional reduced, it follows that there exists some e ∈ D such
that e + J ∈ D′ is idempotent and the principal ideals (r + J)D′ and (e + J)D′ coincide. Let
d := 1 − e. Then it can be easily seen that D(r + J) = D(e + J) = V (d + J). From this it is
clear that D(r) = V (d). �

Note that, if D is zero-dimensional, then max(D) = spec(D) is proconstructible. Also, if D
is a one-dimensional domain with non-zero Jacobson radical J , then max(D) = V (J) is pro-
constructible. Hence both zero-dimensional rings and one-dimensional domains with non-zero
Jacobson radical satisfy (++).
The next result is now an immediate consequence of Proposition 2.15, Lemma 2.17 and Propo-
sition 2.18.

Corollary 2.19. Let (Dλ)λ∈Λ be a family of commutative rings and R =
∏
λ∈ΛDλ. Then the

following assertions are equivalent:
(a) (U) is a maximal ideal of R for every ultrafilter U in the Boolean algebra B =

∏
λ∈Λ P(max(Dλ)).

(b) The subspace max(Dλ) is proconstructible in spec(Dλ) for every λ ∈ Λ.
(c) Dλ satisfies property (++) for every λ ∈ Λ, i.e. for every r ∈ Dλ there exists d ∈ Dλ

such that D(r) = V (d).
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In the particular case where |Λ| = 1, we get the following statement:

Corollary 2.20. Let D be a commutative ring. Then max(D) is proconstructible in spec(D)
if and only if D satisfies property (++), i.e. for every r ∈ D there exists d ∈ D such that
D(r) = V (d).

Minimal prime ideals. For the rest of this section, let (Dλ)λ∈Λ be a family of integral domains
and R =

∏
Dλ. Recall that for an element x ∈ R we set z(x) = {λ ∈ Λ | xλ = 0} and define

n(x) = Λ \ z(x). Moreover, recall the definition of the proper ideal (0)TF = {x ∈ T | z(x) ∈ F} of
a subring T ⊆ R for an ultrafilter F on Λ.

Proposition 2.21. Let F be an ultrafilter on Λ and T ⊆ R =
∏
λ∈ΛDλ be a subring.

(1) The ultraproduct R∗ =
∏F
λ∈ΛDλ is isomorphic to R/(0)RF .

(2) (0)TF is a prime ideal of T .
(3) Every minimal prime ideal of T is of the form (0)TF for some ultrafilter F on T .

Proof. To prove (1), note that ϕ : R → R∗ mapping an element r ∈ R to its equivalence class
r∗ ∈ R∗ is a surjective homomorphism. Its kernel can be easily seen to coincide with (0)RF .
Now, to prove (2), consider the map ι : T/(0)TF → R/(0)RF with ι(x+(0)TF ) := x+(0)RF . It clearly
is an injective homomorphism. Moreover, by (1) and the Theorem of Łoś, R/(0)RF is an integral
domain, hence so is T/(0)TF . It follows that (0)TF is a prime ideal of T .
Finally, for the proof of (3), let P ⊆ T be a minimal prime ideal and let M = {n(x) | x ∈ T \P}.
We claim that M has the finite intersection property. Assume to the contrary that there are
x1, . . . , xn ∈ T \P such that n(x1)∩ . . .∩n(xn) = ∅. Then x1 · . . . ·xn = 0 ∈ P and therefore there
exists some i ∈ {1, . . . , n} such that xi ∈ P , which is a contradiction. Let F be an ultrafilter on
Λ such that M ⊆ F . Clearly, T \ P ⊆ T \ (0)TF and therefore (0)TF ⊆ P . By the minimality of P
it follows that P = (0)TF . �

In the next lemma, we have to restrict our scope to subrings T ⊆ R such that for every Z ⊆ Λ
there exists some x ∈ T such that Z = z(x). Note, that there are examples of such rings T not
being equal to a product of commutative rings, e.g. let T be the ring generated (in R) by all
elements x ∈ R such that xλ ∈ {0, 1} for all λ ∈ Λ.

Lemma 2.22. Let T ⊆ R =
∏
Dλ be a subring such that for every Z ⊆ Λ there exists some

x ∈ T such that Z = z(x). Then (0)TF is a minimal prime ideal of T for every ultrafilter F on Λ.
Moreover, if F and G are two different ultrafilters on Λ, then (0)TF 6= (0)TG .

Proof. Let F be an ultrafilter on Λ and P ⊆ T be a prime ideal such that P ⊆ (0)TF . Let x ∈ (0)TF
and let y ∈ T such that z(y) = Λ \ z(x). Then x · y = 0 ∈ P . Since P is prime, either x ∈ P or
y ∈ P . But y cannot be an element of P ⊆ (0)TF , because otherwise x + y ∈ (0)TF and therefore
∅ = z(x+ y) ∈ F , which is a contradiction. Hence it must hold that x ∈ P .
Now, let G be an ultrafilter on Λ different from F . Let Z ∈ G \F and x ∈ T such that z(x) = Z.
Then x ∈ (0)TG \ (0)TF . �

Corollary 2.23. Let (Dλ)λ∈Λ be a family of commutative integral domains and let T ⊆ R =∏
λ∈ΛDλ be a subring such that for every Z ⊆ Λ there exists some x ∈ T such that Z = {λ ∈

Λ | xλ = 0}. Then the map F 7→ (0)TF is a bijection between ultrafilters on Λ and minimal prime
ideals of T .
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Let U be an ultrafilter in B and for every Y ∈ U set FY = {λ ∈ Λ | Yλ 6= ∅}. Then we can
define the collection

FU = {FY | Y ∈ U}

of subsets of Λ. It can be easily seen that FU is an ultrafilter on Λ.

Proposition 2.24. Let U be an ultrafilter in B and F be an ultrafilter on Λ. Then the contain-
ment (0)F ⊆ (U) of ideals of R =

∏
λ∈ΛDλ holds if and only if F = FU .

In particular, every prime ideal of R contains a unique minimal prime ideal.

Proof. Assume that (0)F ⊆ (U) and let F ∈ F . For a subset M ⊆ Λ we denote by χM the
element of R for which the entry at λ ∈ Λ is 1 if λ ∈M and is 0 if λ /∈M . If we set M = Λ \ F ,
then χM ∈ (0)F ⊆ (U). Therefore Y := S(χM ) ∈ U , where Yλ = ∅ if λ /∈ F and Yλ = max(Dλ)
if λ ∈ F . So F = {λ ∈ Λ | Yλ 6= ∅} and therefore F ∈ FU . Whence F ⊆ FU , which implies
F = FU , because F is an ultrafilter.
Conversely, let F = FU and let r ∈ (0)F . Then for M = {λ ∈ Λ | rλ 6= 0} we have that
χM ∈ (0)F . Therefore Λ \M ∈ F , which implies that Λ \M = {λ ∈ Λ | Yλ 6= ∅} for some Y ∈ U .
Clearly, we have S(χM ) ≥ Y , so S(χM ) ∈ U . Consequently, r = rχM ∈ (U).
For the last statement, let P ⊆ R be a prime ideal. Then P contains a minimal prime ideal. If
Q ⊆ P is a minimal prime ideal, then by Proposition 2.2 there exists an ultrafilter F on Λ such
that Q = (0)F . In the same way, if M is a maximal ideal containing P, then by Proposition
2.21(3) we can pick some ultrafilter U on B such that M = (U). Since (0)F ⊆ P ⊆ (U), it
follows by the considerations before that F = FU , so (0)F = (0)FU , which therefore is the unique
minimal prime ideal contained in P. �

Proposition 2.24 gives a better understanding of the order structure of the set of prime ideals
in the product R of integral domains in the sense that spec(R) is a disjoint union of partially
ordered sets O, where each O has a unique minimal element. This is also a starting point for
our considerations in the next section.

3. Prime ideals in products of Prüfer domains

By Proposition 2.24, if we want to characterize all prime ideals of R =
∏
λ∈ΛDλ it is sufficient

to describe for every ultrafilter U on B the prime ideals P ⊆ R with (0)FU ⊆ P ⊆ (U). So from
now on, fix an ultrafilter U in the Boolean algebra B =

∏
λ∈Λ P(max(Dλ)) and let F = FU be

the corresponding ultrafilter on Λ.
Let R∗ =

∏F
λ∈ΛDλ be the ultraproduct of the Dλ with respect to F . We have seen in Proposition

2.21 that R∗ is isomorphic to R/(0)F . Let moreover R∗U denote the localization of the integral
domain R∗ at the maximal ideal (U)∗ of R∗ corresponding to (U). Then the prime ideals P ⊆ R
with (0)F ⊆ P ⊆ (U) are in inclusion preserving one-to-one correspondence with the prime ideals
of R∗U .
For r ∈ R, we denote by r∗ the image of r in R∗ or the image of r in R∗U , depending on in which
ring we are working in at the moment.
In the following, we want to characterize all prime ideals of R, where every Dλ is a Prüfer
domain. In [20] this was done for the special case where each Dλ is the ring of integers. In [27]
and [28], special types and chains of prime ideals in ultraproducts of certain commutative rings
are described, including for instance all prime ideals in ultraproducts of Dedekind domains. Our
investigation of prime ideals in products of general Prüfer domains is new and is different from
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the one in [28] in the special case of Dedekind domains. Therefore it also gives a new viewpoint
in this situation.
From now on, let Dλ be a Prüfer domain for every λ ∈ Λ.
It is shown in [26, Proposition 2.2] that "Prüfer domain" is preserved by ultraproducts. Therefore
R∗ is a Prüfer domain and R∗U is a valuation domain. Let K∗ be the quotient field of R∗ and
note that it is isomorphic to the ultraproduct with respect to F of the quotient fields Kλ of
Dλ. Moreover we extend the notation V (rλ) and D(rλ) to elements kλ ∈ Kλ, namely set
V (kλ) = {M ∈ max(Dλ) | vM (kλ) > 0}, where vM is the valuation on Kλ corresponding to M ,
and let D(kλ) = max(Dλ) \ V (kλ).
In the following proposition we are able to partially describe the valuation v on K∗ that has R∗U
as its valuation ring.

Valuations and prime ideals.
Proposition 3.1. Let v be the valuation on K∗ having R∗U as valuation ring. Then for a, b ∈ R,
the following assertions are equivalent:

(1) v(a∗) ≥ v(b∗).
(2) There exists Y ∈ U such that for all λ ∈ Λ and for all P ∈ Yλ it holds that vP (aλ) ≥

vP (bλ).
Proof. If either a∗ or b∗ is equal to 0, then the statement is trivial. So let a∗ 6= 0 6= b∗. Since
both (1) and (2) only depend on entries aλ and bλ of a and b for λ in an ultrafilter set of F (and
a,b are both non-zero on such a set), we can assume without loss of generality that aλ 6= 0 6= bλ
for all λ ∈ Λ.
Now assume that (2) holds and let Y ∈ U such that for all λ ∈ Λ and for all P ∈ Yλ we have
vP (aλ) ≥ vP (bλ). Assume to the contrary that v(a∗) < v(b∗). Then 0 < v( b∗a∗ ) and therefore
b∗

a∗ ∈ (U)∗ ⊆ R∗U . Since localization commutes with forming the quotient modulo some ideal, we
can write b∗

a∗ = ( bλ
aλ

)∗λ. We set Z = (V ( bλ
aλ

))λ.
Claim: Z ∈ U .
If the claim holds, we know that Y ∧ Z ∈ U , so in particular Y ∧ Z 6= 0B. So we can pick λ ∈ Λ
such that Yλ ∩ Zλ 6= ∅. Let P ∈ Yλ ∩ Zλ. Since P ∈ Yλ, we have vP (aλ) ≥ vP (bλ). On the other
hand, since P ∈ Zλ = V ( bλ

aλ
), we have vP ( bλ

aλ
) > 0, which implies vP (bλ) > vP (aλ). This is a

contradiction.
To prove the claim, first note that, since b∗

a∗ ∈ (U)∗, we can pick d ∈ (U) and c ∈ R \ (U) such
that b∗

a∗ = d∗

c∗ . By the same argument as in the beginning of the proof, we can choose c such
that cλ 6= 0 for all λ ∈ Λ and we are then able to write d∗

c∗ = (dλ
cλ

)∗λ. Since b∗

a∗ = d∗

c∗ , it follows
that b

a and d
c coincide on a set of F and again, since our considerations only are influenced

by entries for λ in some element of F , we may assume that b
a = d

c . Therefore it follows that
Z = (V (dλ

cλ
))λ = ({M ∈ max(Dλ) | vM (dλ

cλ
) > 0})λ ≥ ({M ∈ max(Dλ) | dλ ∈ M ∧ cλ /∈ M})λ =

(V (dλ))λ ∧ (D(cλ))λ ∈ U by the choice of c and d. So Z ∈ U and the proof for the implication
from (2) to (1) is complete.
Now assume that (1) holds and assume to the contrary that for all Y ∈ U there exists some λ ∈ Λ
and some P ∈ Yλ such that vP (aλ) < vP (bλ). By (1), we have that v(a∗b∗ ) ≥ 0 so that a∗

b∗ ∈ R
∗
U .

Similar to the proof of the other direction, we can now pick c ∈ R and d ∈ R \ (U) such that
dλ 6= 0 for all λ ∈ Λ and ( cλ

dλ
)∗λ = c∗

d∗ = a∗

b∗ = (aλ
bλ

)∗λ. As before, it is no restriction of generality to
assume that aλ

bλ
= cλ

dλ
for all λ ∈ Λ. It follows by the choice of d that Y := (D(dλ))λ ∈ U . So by
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assumption, we can pick λ ∈ Λ and P ∈ Yλ such that vP (aλ) < vP (bλ). Whence 0 ≤ vP ( cλ
dλ

) =
vP (aλ

bλ
) < 0, which is a contradiction. �

For every λ ∈ Λ and P ∈ max(Dλ), we denote by SP the totally ordered submonoid of non-
negative elements (including ∞) of the value group associated to the valuation vP of P . We
define S =

∏
λ∈Λ

∏
P∈max(Dλ) SP to be the product of all these monoids. We write elements

g ∈ S as g = (gλ,P )λ∈Λ,P∈max(Dλ). For g ∈ S, define
(U)g = {x ∈ R | ∃Y ∈ U ∃n ∈ N ∀λ ∈ Λ ∀P ∈ Yλ vP (xnλ) ≥ gλ,P }.

It will turn out that the sets (U)g are prime ideals of R and that they can be used to describe
all prime ideals of R contained in (U) and containing (0)F .
Proposition 3.2. For any g ∈ S with gλ,P > 0 for all λ ∈ Λ and P ∈ max(Dλ), we have that
(U)g is a prime ideal of R contained in (U).
Proof. Clearly (U)g is an ideal. To see that it is contained in (U), let x ∈ (U)g and choose Y ∈ U
and n ∈ N such that for all λ ∈ Λ and for all P ∈ Yλ we have vP (xnλ) ≥ gλ,P > 0. It follows that
S(xn) ≥ Y ∈ U , so xn ∈ (U), which is a prime ideal. Therefore x ∈ (U).
Finally, let a, b ∈ R such that ab ∈ (U)g and let Y ∈ U and n ∈ N such that for all λ ∈ Λ and
all P ∈ Yλ we have vP (anλbnλ) ≥ gλ,P . Given λ ∈ Λ and P ∈ Yλ, it follows that gλ,P + gλ,P ≤
vP (anλbnλ)+vP (anλbnλ) = vP (a2n

λ b
2n
λ ) = vP (a2n

λ )+vP (b2nλ ). Hence vP (a2n
λ ) ≥ gλ,P or vP (b2nλ ) ≥ gλ,P .

If we define Ya = ({P ∈ max(Dλ) | vP (a2n) ≥ gλ,P })λ and Yb = ({P ∈ max(Dλ) | vP (b2n) ≥
gλ,P })λ, then it follows that Ya∨Yb ≥ Y , which implies that Ya∨Yb ∈ U . Since U is an ultrafilter,
it follows that Ya ∈ U or Yb ∈ U . Say Ya ∈ U . Then there exist Y ′ ∈ U (namely Y ′ = Ya) and
n′ ∈ N (namely n′ = 2n) such that for all λ ∈ Λ and for all P ∈ Y ′λ it holds that vP (an′λ ) ≥ gλ,P ,
which means per definition that a ∈ (U)g. �

Proposition 3.3. Let x ∈ (U) and gλ,P = vP (xλ) if P ∈ V (xλ) and gλ,P =∞ otherwise. Then
(U)g is the smallest prime ideal P with (0)F ⊆ P ⊆ (U) containing x.
Proof. We already know that (U)g ⊆ (U). To see that x ∈ (U)g, set Y = S(x) ∈ U , n = 1.
Then for all λ ∈ Λ and for all P ∈ Yλ, we have by definition that vP (xnλ) = vP (xλ) = gλ,P . So
x ∈ (U)g.
Now let (0)F ⊆ P ⊆ (U) be a prime ideal containing x. Since the prime ideals of R containing
(0)F and being contained in (U) are in inclusion preserving bijection with the prime ideals of
R∗U , it suffices to prove the inclusion ((U)g)∗ ⊆ P∗ of the corresponding prime ideals in R∗U . So
let r ∈ (U)g. We show that r∗ ∈ P∗. Let Y ∈ U and n ∈ N such that for all λ ∈ Λ and P ∈ Yλ
we have vP (rnλ) ≥ gλ,P and without loss of generality choose Y ≤ S(x), so that for all λ ∈ Λ
and P ∈ Yλ we have vP (rnλ) ≥ gλ,P = vP (xλ) (this is possible, since S(x) ∈ U and therefore
Y ∧ S(x) ≤ S(x) is in U). By Proposition 3.1, it follows that v((r∗)n) ≥ v(x∗), where v is the
valuation on K∗ having R∗U as valuation ring. Therefore, x∗ divides (r∗)n in R∗U , which implies
that (r∗)n ∈ P∗, which is a prime ideal and therefore contains r∗. This is what we wanted to
show. �

Theorem 3.4. Let R =
∏
λ∈ΛDλ where every Dλ is a Prüfer domain. The prime ideals of R

are exactly the unions of prime ideals of the form (U)g with g ∈ S such that gλ,P > 0 for all
λ ∈ Λ and P ∈ max(Dλ).
Proof. Since R∗U is a valuation domain, the prime ideals of R contained in (U) form a chain.
Therefore every union of (U)g is a union of a chain of prime ideals, hence it is prime.
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Conversely, let (0)F ⊆ P ⊆ (U) be a prime ideal of R. For x ∈ P we define an element
g(x) ∈ S such that for all λ ∈ Λ and for all P ∈ max(Dλ) we have g(x)λ,P > 0. Namely, set
g(x)λ,P = vP (xλ) if P ∈ V (xλ) and g(x)λ,P =∞ otherwise. We claim that

P =
⋃
x∈P

(U)g(x).

By Proposition 3.3, (U)g(x) is the smallest prime ideal contained in (U) and containing x. So⋃
x∈P(U)g(x) ⊆ P. On the other hand, if y ∈ P, then by Proposition 3.3 we have that y ∈ (U)g(y)

and therefore y ∈
⋃
x∈P(U)g(x). �

Heights of prime ideals. Recall that for every λ ∈ Λ and P ∈ max(Dλ), we denote by SP the
totally ordered submonoid of non-negative elements (including ∞) of the value group associated
to the valuation vP of P and we defined S =

∏
λ∈Λ

∏
P∈maxDλ

SP to be the product of all these
monoids.
We now define a relation � on S, where

g � h :⇔ ∀Y ∈ U ∀n ∈ N ∃λ ∈ Λ ∃P ∈ Yλ n · gλ,P < hλ,P

for g, h ∈ S.

Lemma 3.5. Let g, h ∈ S.
(1) If (U)h $ (U)g, then g � h.
(2) Let it hold in addition that there is some Y ∈ U and some N ∈ N such that for all λ ∈ Λ

we have |Yλ| ≤ N (e.g. let every Dλ be semilocal with a uniform bound on the cardinality
of max(Dλ)). Then g � h implies (U)h $ (U)g.

Proof. To see (1), let x ∈ (U)g \ (U)h. Then there exists some Y ∈ U and some n ∈ N such that
for all λ ∈ Λ and P ∈ Yλ we have vP (xnλ) ≥ gλ,P . On the other hand, for all Y ′ ∈ U and n′ ∈ N
there exists some λ ∈ Λ and some P ∈ Y ′λ such that vP (xn′λ ) < hλ,P . It follows immediately that
g � h.
By the additional assumption in statement (2), we can find Y ∈ U and Y1, . . . , YN ∈ B such that
Y = Y1 ∨ . . . ∨ YN and for each i ∈ {1, . . . , N} and λ ∈ Λ we have |(Yi)λ| = 1. Moreover, since
Y ∈ U and U is an ultrafilter there exists some i ∈ {1, . . . , N} such that Y ′ := Yi ∈ U . For each
λ ∈ Λ, let Pλ be the unique maximal ideal of Dλ contained in Y ′λ and let xλ ∈ Dλ such that
vPλ

(xλ) = gλ,P . Clearly, (xλ)λ∈Λ ∈ (U)g \ (U)h. �

We now introduce a special type of ultrafilter that will be helpful to force certain prime ideals
in R to have infinite height. Let B be a Boolean algebra that admits countable joins, i.e. for
every countable family (Bn)n∈N the join

∨
n∈NBn ∈ B is defined. In words of the partial order on

B, every countable subset of B should have a supremum. An ultrafilter G in B is called countably
incomplete if there exists a countable family (Pn)n∈N of elements of B such that Pn /∈ G for every
n ∈ N,

∨
n∈N Pn = 1B equals the top element of B and for all m,n ∈ N we have that m 6= n

implies Pm ∧ Pn = 0B.
This translates in the following way to our main examples of Boolean algebras: An ultrafilter F
on a set Λ is countably incomplete if and only if there exists a countable partition (Pn)n∈N of Λ
such that Pn /∈ F for every n ∈ N. It is shown in [6, Theorem 6.1.4] that for every infinite set Λ
there exists a countably incomplete ultrafilter on Λ.
An ultrafilter U in the Boolean algebra B =

∏
λ∈Λ P(max(Dλ)) is countably incomplete if and

only if there exists a family (Pn)n∈N of elements of B such that Pn /∈ U for every n ∈ N,
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n∈N Pn = 1B = (max(Dλ))λ∈Λ and for all m,n ∈ N we have that m 6= n implies Pm ∧ Pn = 0B.

The family (Pn)n∈N is called a partition of 1B.

Lemma 3.6. If F is a countably incomplete ultrafilter on Λ, then every ultrafilter U in B with
F = FU is countably incomplete.

Proof. Let (Pn)n∈N be a partition of Λ such that Pn /∈ F for all n ∈ N. DefineQ(n) := (Q(n)
λ )λ∈Λ ∈

B for each n ∈ N, where Q(n)
λ = max(Dλ) if λ ∈ Pn and Q(n)

λ = ∅ else. Clearly,
∨
n∈NQ

(n) = 1B
and Q(m) ∧Q(n) = 0B for all m,n ∈ N with m 6= n.
Assume that Q(n)

λ ∈ U for some n ∈ N. Then Pn = {λ ∈ Λ | Q(n)
λ 6= ∅} ∈ FU = F , which is a

contradiction. �

From now on, we again fix an ultrafilter U in B and set F = FU the induced ultrafilter on Λ.

Lemma 3.7. Let F be countably incomplete and g, h ∈ S such that for all λ ∈ Λ and for all
P ∈ max(Dλ) we have gλ,P > 0 and hλ,P > 0.

(1) If g � h, then there exists some k ∈ S such that g � k � h.
(2) If g �∞ = (∞)λ∈Λ, then there exists some k ∈ S such that g � k �∞.

Proof. (2) follows immediately by setting h =∞ in (1).
To show (1), we can assume without loss of generality that gλ,P < hλ,P for all λ ∈ Λ and
P ∈ max(Dλ). We define the following two complementary elements of the Boolean algebra B:

V = (Vλ), where Vλ = {P ∈ max(Dλ) | ∀n ∈ N n · gλ,P < hλ,P } and
W = (Wλ), where Wλ = {P ∈ max(Dλ) | ∃N ∈ N N · gλ,P ≥ hλ,P }.

Since U is an ultrafilter in B, we either have V ∈ U or W ∈ U . Assume that V ∈ U . Since U is
countably incomplete by Lemma 3.6, we can choose a partition (Pn)n∈N of 1B such that Pn /∈ U
for all n ∈ N. By setting V (n) = Pn ∧ V for each n ∈ N, we get a partition (V (n))n∈N of V such
that V (n) /∈ U for every n ∈ N (in the sense that it is a partition of the top element V in the
subalgebra BV := {Y ∈ B | Y ≤ V }). For λ ∈ Λ and P ∈ max(Dλ), we define kλ,P = n · gλ,P if
P ∈ V (n)

λ and kλ,P = gλ,P if P /∈ Vλ. Then clearly k � h.
To see that g � k, let U ∈ U and n ∈ N. Then U ∧ V ∈ U and therefore there exists some
N > n such that U ∧ V (N) 6= 0B. (Indeed, if for all N > n we would have that U ∧ V (N) = ∅,
then (U ∧ V (1))∨ . . .∨ (U ∧ V (n)) = U ∧ V ∈ U . Therefore there would exist some i ∈ {1, . . . , n}
such that U ∧ V (i) ∈ U and therefore V (i) ∈ U , which is a contradiction.) Pick some λ ∈ Λ and
P ∈ Uλ ∩ V

(N)
λ . Then kλ,P = N · gλ,P > n · gλ,P , so g � k.

Now consider the case where W ∈ U . For each λ ∈ Λ and P ∈Wλ, there exists some N > 1 such
that hλ,P ≤ N · gλ,P , so we can pick Nλ,P ≥ 1 such that Nλ,P · gλ,P < hλ,P ≤ (Nλ,P + 1) · gλ,P .
Define kλ,P = [Nλ,P / log(Nλ,P )] · gλ,P , where [x] denotes the floor function evaluated at x ∈ R
and [Nλ,P /0] :=∞. For P /∈Wλ let kλ,P = gλ,P .
Let Y ∈ U and n ∈ N. We have to show the following two assertions:

(i) There exist λ ∈ Λ and P ∈ Yλ such that n · gλ,P < kλ,P .
(ii) There exist λ ∈ Λ and P ∈ Yλ such that n · kλ,P < hλ,P .
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We can assume without loss of generality that Y ≤W . First of all, note that {Nλ,P | λ ∈ Λ, P ∈
Yλ} is unbounded, because g � h. It follows that the sets

S(i) := {[Nλ,P / log(Nλ,P )] | λ ∈ Λ, P ∈ Yλ} and
S(ii) := {log(Nλ,P ) | λ ∈ Λ, P ∈ Yλ}

are also unbounded. To show (i), we use that S(i) is unbounded and pick λ ∈ Λ, P ∈ Yλ such
that n < [Nλ,P / log(Nλ,P )]. It follows that n · gλ,P < [Nλ,P / log(Nλ,P )] · gλ,P = kλ,P .
For the proof of (ii), we can pick λ ∈ Λ, P ∈ Yλ such that n < log(Nλ,P ). It follows
that n · [Nλ,P / log(Nλ,P )] ≤ n · Nλ,P / log(Nλ,P ) < n · Nλ,P /n = Nλ,P . Hence n · kλ,P =
n · [Nλ,P / log(Nλ,P )] · gλ,P < Nλ,P · gλ,P < hλ,P . �

Theorem 3.8. Let (Dλ)λ∈Λ be a family of Prüfer domains and set R =
∏
λ∈ΛDλ. Let F

be a countably incomplete ultrafilter on Λ and U be an ultrafilter in the Boolean algebra B =∏
λ∈Λ P(max(Dλ)) such that F equals the unique induced ultrafilter FU on Λ and such that there

exist Y ∈ U and N ∈ N with |Yλ| ≤ N for all λ ∈ Λ (e.g. let all Dλ be semilocal with a uniform
bound on the cardinalities of max(Dλ)).
Then for every prime ideal P ⊆ R with (0)F $ P there exists some prime ideal Q ⊆ R such that
(0)F $ Q $ P .
In particular, every prime ideal of R strictly containing (0)F is of infinite height.

Proof. Let I ⊆ S such that P =
⋃
g∈I(U)g, which exists by Theorem 3.4. Since (0)F ⊆ (U)g

for all g ∈ I, there must exist some g ∈ I such that (U)∞ = (0)F $ (U)g. It follows by
Lemma 3.5(1) that g � ∞. So by Lemma 3.7(2) we have that there exists some h ∈ S with
g � h � ∞. Lemma 3.5(2) implies that (0)F $ (U)h $ (U)g ⊆ P . The assertion follows by
setting Q = (U)h. �

We close with an example of a Prüfer domain in which every non-zero prime ideal is of infinite
height: Let Λ be an infinite set and (Dλ)λ∈Λ be a family of semilocal Prüfer domains with the
property that there exists N ∈ N such that |max(Dλ)| ≤ N for all λ ∈ Λ. Moreover, let F be a
countably incomplete ultrafilter on Λ (which exists by [6, Theorem 1.6.4]). Then by Theorem 3.8,
every non-minimal prime ideal of R =

∏
λ∈ΛDλ containing (0)F is of infinite height. As noted

before, the ring theoretical property of being a Prüfer domain is preserved by ultraproducts.
So the ultraproduct R∗ =

∏F
λ∈ΛDλ

∼= R/(0)F is a Prüfer domain in which every non-zero prime
ideal is of infinite height. If every Dλ is local, then R∗ is in addition a valuation domain. If every
Dλ is non-local, then so is R∗.
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