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ABSTRACT. If Ris asubring of a Krull ring S such that Rg is a valuation ring
for every finite index Q = PN R, P in Spec!(S), we construct polynomials
that map R into the maximal possible (for a monic polynomial of fixed degree)
power of PSp, for all P in Spec! (S) simultaneously. This gives a direct sum
decomposition of Int(R, S), the S-module of polynomials with coefficients in
the quotient field of S that map R into S, and a criterion when Int(R, S) has
a regular basis (one consisting of 1 polynomial of each non-negative degree).

INTRODUCTION

If A is an infinite subset of a domain S, we write Int(4, S) for the S-module
of polynomials with coefficients in the quotient field of S that — when acting as a
function by substitution of the variable — map A into S. For Int(S, S), the ring
of integer-valued polynomials on S, we write Int(S). Beyond the fact (known of
old) that the binomial polynomials (fl) = w form a basis of the free
Z-module Int(Z), the study of Int(S) originated with Pélya [16] and Ostrowski
[15], who let S be the ring of integers in a number field (their results have been
generalized to Dedekind rings by Cahen [4]). Int(R, S) for R # S has only begun
to attract attention more recently [2], [3], [6], [8], [11], [13].

We will treat Pélya’s and Ostrowski’s questions in the case where R # S and S
is a Krull ring; in particular the question when Int(R,S) is a free S-module that
admits a regular basis, and the related one of determining the highest power of PSp,
where P is a height 1 prime ideal of S, that a monic polynomial of fixed degree can
map R into. Following Pélya, we call a sequence of polynomials (g, )nen, regular,
if deg g, = n for all n. One basic connection between a module of polynomials and
the modules of leading coefficients should be kept in mind:

0.1 Lemma. Let R be a unitary subring of a field K, M an R-submodule of K|z],
and I, = { leading coefficients of n-th degree polynomials in M} U {0}.
(1) If (gn)nen, is a regular sequence of monic polynomials in K[x] such that
I,g, € M for all n, then M = Zz‘;o I,.g, (direct sum).
(ii) A regular set of polynomials in M is an R-basis if and only if the leading
coefficient of the n-th degree polynomial generates I, as an R-module.
(iii) M has a regular R-basis if and only if each I, is non-zero and cyclic.
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Proof. (i) If (gn)nen, is as stated, then "> | Ingn C M and the sum is direct, since
deg(gn) = n makes the g, linearly independent over K. An induction on N = deg f
shows that f € M implies f € Zg:o I,,g,. Indeed, for N =0, f € Iy = goly, and
if N > 0 and ay is f’s leading coefficient, then ay € Iy, so h = f —angny € M
and h € 2,,”;01 I,,g» by induction hypothesis. (ii) and (iii) are easy. O

1. POLYNOMIALS MAPPING A SET INTO A DISCRETE VALUATION RING

Throughout section one, v is a discrete valuation on a field K with value-group
'y = Z and v(0) = oo, and R, its valuation ring with maximal ideal M,. In a
kind of generic local regular basis theorem, we will establish the connection (well-
known in special cases) between Int(A, R,) and the maximal power of M, that
a monic polynomial of degree n can map A into, for all A C K for which this
maximum exists for every n. A subset A of the quotient field of a domain R is
called R-fractional if there exists a d € R\ {0} such that dA C R.

1.0 Lemma. If R is an integrally closed domain with quotient field L, A C L and
f nmon-constant € L[z] then f(A) is R-fractional if and only if A is.

Proof. Let f € L[z], deg f = n > 0. If f(A) is R-fractional there is a non-zero
d € R, with df(a) € R for every a € A. Let ¢ € R\ {0}, such that cf € R[z],
and set g = cdf = c,a™ + ... + ¢y. For every a € A, g(a) € R implies that c,a is
integral over R, therefore c¢,a € R and ¢, A C R. The converse is clear. O

Since a set B C K is R,-fractional if and only if minyep v(b) exists in Z U
{oo}, Lemma 1.0 shows that A being R,-fractional is necessary and sufficient for
minge 4 v(f(a)) to exist in Z U {oo} for any non-constant f € K[z]. To exclude
polynomials identically zero on A, for which min,e 4 v(f(a)) = oo, we need deg f <
| A], so that the conditions on A in Lemma 1.1 below are necessary.

1.1 Lemma. Let n € Ny. If A is an R, -fractional subset of K with |A| > n, then
max{meiquw(f(a)) | f monic € K[z], deg f = n} ezists.

Proof. The case n = 0 is trivial; so let n > 0 and m € N such that A is not
contained in any union of n cosets of M]" in K. Such an m exists, since n < |4|
and by the Krull Intersection Theorem [,y M;" = (0). We show that for every
monic f € K[z] of degree n there exists an ay € A with v(f(ag)) < nm (and
consequently max{min,e 4 v(f(a)) | f monic € K|z], deg f = n} < nm).

Let v" be an extension of v to the splitting field of f over K, R, its valuation-
ring with maximal ideal M,, and e = [I'ys : T',]. A is not contained in any union
of n cosets of M, in K'. Pick an ag € A that is not in u + M,™¢ for any root
uof f in K'; then v(f(ag)) = v'(f(ao)) = Yoy V' (a0 — u;) < nm. O

1.2 Theorem. Let A be an infinite, R,-fractional subset of K. For n € Ny set
Yo,a(n) = max{meigv(f(a)) | f monic € K[z], deg f =n}.

(i) M, WA = {leading coefficients of degree n polynomials in Int(A, R,)} U

{0}
(ii) A regular basis of Int(A, R,) is given by (¢ngn)nen,, with g, € K|z] monic,
deggn = n, and ¢, € K, such that néigv(gn(a)) = Yy.a(n) and v(c,) =

—Yv,a(n).
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Proof. Let I., = {leading coefficients of degree n polynomials in Int(A, R,)}U
{0}. The leading coefficient ¢, of any n-th degree polynomial in Int(A, R,) must
satisfy v(¢,) > —vp,4(n), so I, C M, Yealn) Now, for n € Ny, let g, be monic
of degree n in K[z] with min,ec 4 v(gn(a)) = vu,4(n) (such things exist by dint of
Lemma 1.1). Then M,,_‘Y"-"(")gn C Int(A, R,), so M, Ywaln) C I,. This shows
(1) and also that I, ,gn, C Int(A, R,) for all n € Ny. (ii) follows by Lemma 0.1 and
the fact that M.J_'Y""‘(") = ¢, R, for every ¢,, € K with v(c,) = —7yy,a(n). O

Before deriving a formula for max{min,e 4 v(f(a)) | f monic € K|z], deg f = n},
when A is a subring of R,, we check that the other plausible way of normalizing
the polynomials would yield the same value. We also see that polynomials mapping
A C R, into the maximal possible power of M, can be chosen to split with their
roots in any set that M, -adically approximates A (for instance in A itself, or, if R,
is the localization of a ring R at a prime ideal of finite index, in R). We need a
lemma from (7] (but include the proof).

1.3 Lemma. Let f € R,[z], not all of whose coefficients lie in M, split over K,
as f(z)=d(x —by) ... (x —bp) - (x—c1) ...- (z — ) withv(b;) < 0,v(c;) >0,
and put f,(z) =(z —c1)-...-(x —a). Then, for all r € Ry, v(f(r)) = v(f+(r)).

Proof. For r € R, v(r — b;) = v(b;) and so v(f(r)) = v(d) + > i, v(b:i) + v(f.(r));
we show v(d) = — E;’;l v(b;). Consider d~!f(z) = 2"+ an_12™" 1 +... +ao. Since

f € Ry[z] \ My[z], v(d) = — ming<g<n v(ax). But ay is the elementary symmetric
polynomial of degree n — k in the b; and ¢;, so the minimal valuation is attained
by v(@n—m) = E:’;l v(b;)- O

1.4 Proposition. Let A C R, and 0 < n < |A|; then a and ~ below are equal:
a = max{minv(f(a)) | f € Ry[z] \ My[2], deg f = n},
v = ma.x{meigv(f(a)) | f monic € K|xz], deg f = n}.

If, furthermore, B C R,,, such that B intersects every coset of M,! that A intersects,
for all 1 € N, then § below is equal to o and ~; and so is (3, if B is also a ring:

8 = max{minv(f(@) | f € Bla]\ (M, N B)[x], deg f = n},
6 = max{minv(f(@) | f(z) = [[_, @~ d), d: € B}.

Proof. Let B be a fixed subset of R, that intersects every coset of every power
of M, that A intersects (e.g. B = R,, when only interested in a and ~). For
n = 0 all four expressions are equal to 0; now consider a fixed n > 0. Clearly
6 < ~and, if Bisaring, § < 8 < a. Also v < «, because, given f monic in
K|z], there exists a d € R, such that df = g € Ry[z] \ My[z] and for all a € A
v(g(a)) = v(d) + v(f(a)) > (f(a)), and 50 minee 4 v(g(a)) > minges v(f(a)).

To show a < §, we fix f € R,[z] \ M,[z] of degree n and construct a monic
g that splits with roots in B such that v(g(a)) > minge 4 v(f(a)) for all a € A.
Let v' be an extension of v to the splitting field of f over K. For all a € A,
v'(f(a)) =v'(fi(a)) with f,(z) = ]—ﬁ:l(z — ¢;), where the ¢; are the roots of f in
R,, by Lemma 1.3. Put s = min,ec4 v'(f.(a)). We replace each ¢; by a d; € B
chosen such that H:=1(:c — d;) = h(z) satisfies v'(h(a)) > s for all @ € A. If
(ei + Mf,) NA # 0 for all k € N, we pick d; out of (¢; + M, ) N B; otherwise out of
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(¢i + M%) N B with k maximal such that (¢; + M%) N A # (). Since the intersection
of a residue class of MK, in R,/ with R, is either empty or an entire residue class of
a power of M, in R,, and B intersects all of these that A intersects, it is possible
to find such d; in B. Now for every a € A either v'(a — d;) > v'(a — ¢;) for all i and
so v'(h(a)) = v'(fi(a)) > s, or v'(a — d;) > s for some 7 and hence v'(h(a)) > s.
To get a polynomial of degree n, set g(x) = (z — do)" 'h(z), do € B. O

2. POLYNOMIALS MAPPING INTO A MAXIMAL POWER OF M,

If R is an infinite subring of a discrete valuation ring R,, we will construct
polynomials gn(z) = (z — a1)...(z — an) that map R into the maximal possible
(for a monic polynomial of degree n) power of M,, by finding sequences (a;) in R
that show a nice distribution among the cosets of M|’ N R, to serve as roots.

This generalizes a procedure of Pélya [16] (also used by Gunji and McQuillan
[12], [14], Cahen [4] and others) for the special case where R,, = Rg, Q being a prime
ideal of index ¢ in R such that Rg is a discrete valuation ring: Pick 7 € Q\ Q?
and a complete set of residues rg, ...,7g—1 of Q in R and define a, = Y., 7e, 7", if
n =Y ,50Ci¢" is the g-adic expansion of n. The resulting polynomials map R into
the highest possible power of @ and can be used to give a regular basis of Int(R,)
(most clearly stated in [14]). Gilmer [10] has remarked that the construction even
works for Int(D), D a quasi-local ring with principal maximal ideal.

The Z-sequences below are defined for any commutative ring R. All sequences
are indexed by an initial segment of N or Ny. Quantifiers over indices of such a
sequence are assumed to range over precisely the index-set.

2.0 Definition. If 7 is a set of ideals in a commutative ring R, we define an
Z-sequence in R to be a sequence (an) of elements in R with the property

VI€eZ VYn,m an =@y modI <= [R:I]|n—m.
We define a homogeneous Z-sequence to be one with the additional property
VIEeZ VYn>1 a, €I <= [R:I]|n.

(Any infinite [R : I] we regard as dividing 0, but no other integer.) Note that
ay,az,... is a homogeneous Z-sequence if and only if 0 = ag,a;,asz,... is an
Z-sequence.

2.1 Proposition. Let T = {I,|n € N} be a descending chain of ideals in a com-
mutative ring R. Then there exists an infinite homogeneous Z-sequence in R.

Proof. Put I = R. For k > 0, if [Ii: I41] is finite, let {a'*)]0 < j < [Ix: Txsa]}
be a system of representatives of Iy : Iy with a(()k) = 0, otherwise let (a;k) )ieN,

be a sequence in Ij of elements pairwise incongruent mod I, with a((,k) =0. If
Iy € T with [R: Iy] finite, then every n < [R: Iy]| has a unique representation
n= ZkN;()l Jk[R : Ix] with 0 < jix < [I: Ix4+1], and we set a, = Z;::ol agf). If the
indices of ideals in 7 get arbitrarily large while remaining finite, this defines our
Z-sequence inductively. Otherwise there exists Iy € Z of maximal finite index such
that either [In: In41] is infinite or I, = In for m > N. Define a,, forn < [R: IN]
as above. Then, in the first case, set ap,, = a,™) + a, for m = ¢[R: Iy] + r with
0 <r<|[R: Iy], and a,, = a, in the second. O
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2.2 Facts. (i) For I € T of finite index in R, any [R : I] consecutive terms of an
T -sequence form a complete set of representatives of R mod I.

(i) If (a;)I, is an Z-sequence in R then (r — a;)!'_, is an I-sequence for every
r € R and (ap — an—i)"=y is a homogeneous T-sequence.

The following lemma will be needed for globalization.
2.3 Lemma. If ai,...,a;1 is an Z-sequence for a chain of ideals T, J € I with
[R:J] >1, and by, ...,b; € R such that b,, = a,, mod J for 1 < n <1, then (b,) is
also an I-sequence, and homogeneous if (a,) is.
Proof. Let I € 7 and 1 < n,m < [. First suppose n = mmod [R : I|. Then n=m
or [R: I] <l. In the latter case J C I, so b, = a, = a,, = b, mod I. Now suppose
n #m mod [R : I]. Either J C T orI C J. If J C I then b, = a, # @y = by,
mod I. If I C J then b, = a,, # a;, = by, mod J (because 0 # n —m < [R : J]),
hence b,, # b,, mod I. Homogeneity is shown similarly. O

From now on, R is always an infinite subring of a discrete valuation ring R,. Note

that the definitions of a, r(n) and v-sequence below depend only on M, and R,
and thus do not distinguish between equivalent valuations.

2.4 Definition. A v-sequence for R is an {M' N R | n € N}-sequence in R. In
other words, (a,) is a v-sequence for R if and only if for all n € N and all ¢, j,
a; —a; € M," <<= [R:M,"NR||i—j
and a homogeneous v-sequence if in addition, for all n € N and all j > 1,
aj € M," <= [R:M,"NR]|j.

If [R : M,™ N R] is infinite, distinct elements of a v-sequence must be incongruent
mod M," NR. Proposition 2.1 guarantees the existence of an infinite homogeneous
v-sequence for every infinite subring R of every discrete valuation ring R,,.

2.5 Definition. For n € Ny, R an infinite subring of R, and ¢ € N, let
n n

oy, r(n) = [—] and ag(n) = [—] .
; [R: M,” NR] ; ¢’

Infinite indices are allowed; 2 = 0. Since R is infinite, a, r(n) is always a
finite number. We will frequently use the fact that a, r(n) > 0 if and only if
n > [R: M, NR]. If Q is a prime ideal in a domain D, such that Dg, is a discrete
valuation ring, we write v, for the corresponding valuation with value group Z.

2.6 Facts. (i) If Q is a prime ideal of finite index q in R such that Rq is a discrete
valuation ring, then oy, r(n) = ag(n) for alln.

(ii) If v is a discrete valuation, R an infinite subring of R, and v' an extension
of v with [Ty : '] = e finite, then oy gr(n) =e- ayr(n) for alln.

Proof. (i) Since @ is maximal, (QRg)" N R = Q™ for all n. Using the fact that
Q contains a generator of QR one sees that [R : Q"] = [Rg : (QRg)"] = ¢q" for
all n. (ii) For k € N, My* NR = (My,* N R,) N R = M, N R, where [z] denotes
the smallest integer greater or equal z. Each number [[RM—?JHR]] appears e times,

as [m] for k= (5 —1)e+1, ..., je, in the sum for ay, r(n). O

In the remainder of section two, v is assumed to have value-group Z.
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2.7 Lemma. Let (a:)™}, (b)), and (c;)", be v-sequences for R, and (c:i)™,
homogeneous. Then

(a) v(er-...-cn) =aur(n) <vb1-... - bn) < av,r(n) + maxi<i<n v(bi),
(b) v(ITi(@ans1 — ai))= avr(n) < v([[iei(r — bi)) for all v € R.
Proof. v(ey - ... ¢p) = EjZl |{z| 1<i<nu(g)> ]}l and similarly for the b;.

Since for finite index M,’ N R every [R : M,’ N R] successive terms of a v-sequence
form a complete residue system of R mod M,’ N R, we have Vj € N

n n
L )= iH=l————=| < {i|vi) >} < | ————— | + 1.
{zlv(c)_J}‘ [[R:MUJOR]] < ‘{ZIU( )_J}’ < [[R:MUJOR]]-#
This implies (a) (and, since the 1 on the right can only occur if [R : M,’NR] [n,
v(by-...-by) < ay r(N) + maxi<i<cn v(b;) —max{j | [R: M,” N R] divides n}). By
Fact 2.2 (ii) about Z-sequences, (b) is a special case of (a). O

2.8 Theorem. Let R be an infinite subring of R,. An R,-basis of Int(R, R,) is
given by

fo=1 and fn(z)=nrﬂfil=(;iﬁ:fiii) (n>1),

where (an)2%, is a v-sequence for R.

Proof. An infinite v-sequence (a,);%; in R exists by Proposition 2.1 applied to
{M," N R|n € N}. The f,, being a K-basis of K[z], are free generators of the
R,-module they generate in K|[z], call this module F'. Since by Lemma 2.7 every
fn maps R to R,, F C Int(R, R,). For the reverse inclusion we show the stronger
statement that Int(A4, R,) C F, where A = {a,|n € N}. Let f € Int(4, R,), f =
Z;‘\,:o l; fj with [; € K. We show inductively that the [; are in Ry. lo = f(a1) € R..
The induction hypothesis is [; € R, for 0 < j < n. Using this and the facts that
fiai) =0 for j > iand fj(aj+1) = 1, we see that f(ans1) = ln +Z;‘=_ol lifi(ans1).
Since f;(a;) € R, for all 4,j (by Lemma 2.7) and f € Int(A, R,), the sum on the
right as well as f(an+1) is in R,, therefore [,, € R,,. O

Remark. For an infinite subring R of R, and A C R, the proof of Theorem 2.8 shows
that if A contains an infinite v-sequence for R, then Int(A, R,) = Int(R, R,). The
converse holds, too (the criterion for Int(A, R,) = Int(R, R,) in [7] is easily seen to
be equivalent to A containing an infinite v-sequence for R).

Corollary 1. a, r(n) = max{ mi}lzlv(f(r)) | fmonic € K[z], degf = n} and
re
M, R { leading coefficients of n-th degree polynomials in Int(R, R.) } U {0}.

Proof. The second statement can be read off the theorem using Lemma 2.7 (b); the
first one then follows by Theorem 1.2. O

Pélya’s Satz IV [16] is a special case: if P is a prime ideal in a domain R such that
Rp is adiscrete valuation ring and [R : P| = ¢, then (by Proposition 1.4 with B = R
and Fact 2.6 1) ay(n) = max{ min,crve(f(r)) | f € R[z]\ P[z], deg f = n}.

Corollary 2. Let g,(z) = [[I—,(z — a;™), where (a;™)?_, is a v-sequence for R
when n > [R : M, N R], and let g,, be any monic polynomial in R,[x| of degree n
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for0 <n < [R: M,NR]. Further, for n € Ny, let cn € K with v(cn) = —aw,r(n).
Then (cngn)nen, is an Ry-basis of Int(R, Ry).

Proof. For all n € Ny, r € R, v(gn(r)) > ayr(n) (by Lemma 2.7, in case n >
[R: M, N R], and because g, € R,[z] and a, r(n) = 0 otherwise). By the maxi-
mality of a, r(n) (Corollary 1), min,e g v(gn(r)) = @y, r(n). Therefore (¢, gn)nen,
is an R,-basis of Int(R, R, ) by Corollary 1 and Theorem 1.2 (ii). O

3. POLYNOMIALS MAPPING A SUBRING INTO A KRULL RING

Notation. Let S be a domain with quotient field K, such that S = [,.), Rv, V a
set of discrete valuations (with value-group Z) on K; and R an infinite subring of
S. We put I, = {leading coefficients of n-th degree polynomials in Int(R, S)}U{0}
and introduce names for recurring additional conditions:
(F) Vge N{QE R|[R:Q] =qand Q = M, N R for some v € V} is a finite
set.
(C) For every prime ideal @ of finite index in R, the set of M," N R with n € N,
v €V, and M, N R = Q, if not empty, forms a descending chain of ideals.

Note that (C) holds naturally in two cases: when there is only one M, such that
M, N R = Q, and when every M,," N R with M, N R = @ is a power of Q.

3.0 Lemma (Cahen [4]). If R is an infinite subring of a Krull ring S and ¢ € N,
then S has at most finitely many height 1 prime ideals P with [R: PN R] = q.

Proof. There exists r € R with r? — r # 0. For every P with Q = RN P of index ¢
in R, 7 —r € Q C P, so the statement follows by the definition of Krull ring. O

3.1 Lemma. Letv € V be such that M, NR= Q # (0), and L the quotient field of
R. If Rq is a valuation ring, then it is a discrete valuation ring and Rg = R,N L.
If Q is also a mazimal ideal, then, for every n € N, M N R is a power of Q.

Proof. For any valuation ring V with quotient field L and maximal ideal M we
have L\V = {re€ L* |r ' € M}. Put R,NL = R, and M, N L = M,,; then
R,, and Rq are valuation rings with quotient field L and maximal ideals M, and
QRg, respectively. R C R, and M,, "R = M, "R = Q imply Rg C R,, and
also QRg C M,,. By the latter inclusion L \ Rg = {r € L* | 7! € QRg} C
{reL*|r '€ My} =L\ Ry. This shows Rg = Ry = R.NL,s0o Rg is a
discrete valuation ring and every M} N Rq is a power of QRg. If Q) is maximal,
then (QRg)* N R = QF for all k, so M N R is a power of Q. O

3.2 Lemma. (C) implies: For every finite set M of prime ideals of finite index in
R and every m € N, there erists a sequence (a;)™, in R that is a homogeneous
v-sequence for all v in V with M, N R € M, simultaneously.

Proof. For every Q € M, I = {M,"NR|v e V,ne NM,NR = Q} (if not
empty) is a descending chain by (C), so there exists a homogeneous Zg-sequence
(ai'@)22, in R by Proposition 2.1. For each Q with Zg # 0 let I be an element of
Iq with [R: Ig] > m. Ig = M,"NR for some v and n, and therefore it contains Q™.
Since different @) are co-prime, there exists, by the Chinese Remainder Theorem, a
sequence (a;)™, in R that is congruent to (a;(?))™; modulo I for all Q € M. By
Lemma 2.3, this a homogeneous Zg-sequence for all Q € M, i.e., a homogeneous
v-sequence for all v with M, N R € M. O
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From Lemma 3.0, Lemma 3.1 and the fact that the powers of an ideal @ form
a descending sequence, we conclude that the hypothesis of Theorem 3.4 below is
satisfied in at least one natural setting:

3.3 Fact. If S is a Krull ring, V = {vp | P € Spec!(S)}, and R an infinite subring
such that Rq is a valuation ring for every finite index Q = PN R, P € Spec!(S),
then (C) and (F) both hold.

In the following theorem, the case where S is a Dedekind ring and R = S is due
to Cahen [4] (also pertinent: [5]).

3.4 Theorem. Let R be an infinite subring of S = (), Ry If (C) and (F) hold,
then
Iy= () M@=t (n € Ny)
vey
and there exists a reqular sequence of monic polynomials (g,) in R[z] such that

Int(R,S) = Ingn,

n>0

namely, gn(z) = [[, (@ —a;™), where (a;(™)2, is a simultaneous v-sequence for
allv eV with [R: M,NR] <n.

Proof. Int(R,N,cy Rv) = Nyey Int(R, Ry), therefore I, C ), ¢y, My~ ** %™ (by
Theorem 2.8, Corollary 1). For the reverse inclusion, let ¢ € [, My av.R(M)  Got
Vn={veV|ayrn) >0} ={veV|[R: M,NR] <n}; then {M,NR|veEV,}
is finite by (F). Let (a;™)"_; in R be a homogeneous v-sequence for all v € V),
simultaneously (which exists by Lemma 3.2) and g,(z) = [['—,(z — ;™). Then
min,eg v(g(r)) > ay,r(n) for all v € V (by Lemma 2.7 when v € V,,, and because
@y r(n) = 0 and g, € R[z] otherwise), which means cg(z) € Int(R, (), ¢y R,) and
hence ¢ € I,,. This completes the proof of the first statement and also shows, for
all n > 0, that I,,g,, C Int(R, [,y Ry), so the second follows by Lemma 0.1. O

From now on, S is a Krull ring. By convention, the empty intersection or product
of ideals of S equals S. We denote the set of height 1 prime ideals of S by Spec!(S)
or P. If P € P, we write apg for a,, g and, if j € No, P9 for (PSp)’ N S. With
this notation we have, for n € Ny and P € P:

apr(n) =) [m] '

Jjz1

3.5 Lemma. Let S be a Krull ring and V = {vp | P € P}. If (C) holds, then
Int(R, S) has a regular basis if and only if \pep (r.prRj<n Plar.r(n) s principal
for all n.

Proof. apr(n)# 0 if and only if [R : PN R] < n. Since (F) holds by Lemma 3.0,
this only happens for finitely many P for each n. If {ap|P € P} is a set of
integers, only finitely many of them non-zero, then ()., (PSp)~“~ is principal if
and only if (pcp (PSp)*” is, namely if there exists ¢ € K with vs(c) = ap for all
P € P. If all ap are non-negative then (p.p (PSp)™ =,,.50 P@?) Applied to
Npep (PSp)~*»#™) which is I, by Theorem 3.4, with Lemma 0.1 (iii) in mind,
this proves the claim. O
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3.6 Theorem. Let R be an infinite subring of a Krull ring S, P = Spec'(S),
P*={PeP|[R:PNR) finite} and Q = {RNP | P € P*}. If Rq is a valuation
ring for all Q € Q, then Rq is a discrete valuation ring for all Q € Q and

Int(R, S) has a regular basis <= Vg€ N ﬂ P(€P) is a principal ideal of S,
PeP
[R:RNP]=¢q
where ep is the ramification index of PSp over QRq, for P € P*, Q = PN R.

Proof. Let Py ={P € P |[R: PNR]=gq}, PPy, Q=PNR, L the quotient
field of R; then by Lemma 3.1 Rg = Sp N L and Rg is a discrete valuation ring.

v}, = (1/ep)vp is equivalent to v, and is an extension of v, to K with [Ty, : o] =

ep. By the Facts 2.6 (ii) and (i), apr(n) = ay, r(n) = epag,r(n) = epay(n).
If we call the left and right sides of the claimed equivalence (1) and (r), re-

spectively, then (1) is equivalent to (1') ‘Vn ﬂ[ Pe‘p] Pler.r(M) ig principal’ by
R:PNR)<n
Lemma 3.5 (whose condition (C) holds by Fact 3.3). We know that

(| Pleret) = () () Pleroatm),

PcP g<n PEP,
[R:PNR]<n

The latter is clearly principal provided all Pep, P(€r) are; thus (1) = (I').

For (1) = (r), suppose (<, Npep, Pleraa(m) = 5 8 for all n. We see that
595 = Npep, Pler) n Ni<g Npep, Plerai(@)) because agy(g) = 1. This allows an
induction on ¢: from the formula for s,S we conclude that Pep, P(€P) is principal
if Npep, P(€7) i principal for all [ < q. O
Corollary 1. If R C S is an extension of Krull rings such that ht(PNR) <1 for
all height 1 prime ideals P of S, then

Int(R, S) has a regular basis <= VYqgeN ﬂ div(QS) is principal,

QeSpec! (R)
[R:Ql=q

where div(QS) means the smallest divisorial ideal containing QS.
Proof. If R C S is an extension of Krull rings with the stated property and Q
is in Spec!(R), then div(QS) = Npespect(s) P€r) | where e, = e(P|Q) is the

PAR=Q
ramification index of PSp over QRqg [1, p. 183]. O

In particular, if R C S is an extension of Dedekind rings, then

Int(R, S) has a regular basis <= VgeN H QS is principal.

QESpec(R)
[R:Q]=q

A different specialization gives Ostrowski’s criterion [15]. If S is a Krull ring,
Int(S) has a regular basis <= Vqge N H P is principal.

PeSpec! (S)
[S:P]=q

When a regular basis exists, we can give a fairly explicit description of one. (For
Int(S), S a Dedekind ring, there also is a different construction by Gerboud [9].)
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Corollary 2. In the situation of Theorem 3.6, if (| pep P©7) =¢,8 (¢ €N)

[R:PNR]=q
then a regular basis of Int(R, S) is given by fo = 1,
fn(z) = H cq—aq(ﬂ) H(z — ai(ﬂ)) (Tl € N)
g<n i=1

where (a;™)"_, C R is a ve-sequence for all P € P with [R: PN R] < n.

Proof. vp(c,;a"(n)) = —epay(n) = —appr(n) for the P € P with [R: PN R] = q,
and zero for all other P € P, so vp([],<,, cq_a“(")) = —ap g(n) for all P € P (since
apr(n) =0ifn < [R: PN R]). Therefore the f, are an Sp-basis of Int(R,Sp) for
all P € P simultaneously, by Theorem 2.8, Corollary 2. O
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