Sylow p-groups of polynomial permutations on the integers mod p^n

Sophie Frischa,*,1, Daniel Krennb,2

a Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria
b Institut für Mathematik B, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria

Abstract

We enumerate and describe the Sylow p-groups of the groups of polynomial permutations of the integers mod p^n for $n \geq 1$ and of the pro-finite group which is the projective limit of these groups.

© 2013 The Authors. Published by Elsevier Inc.
All rights reserved.

MSC: primary 20D20; secondary 11T06, 13M10, 11C08, 13F20, 20E18

Keywords: Polynomial permutations; Polynomial functions; Polynomial mappings; p-Groups; Pro-p-groups; Sylow p-groups; Finite rings

* This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
* Corresponding author.

E-mail addresses: frisch@tugraz.at (S. Frisch), krenn@math.tugraz.at (D. Krenn).

1 Sophie Frisch is supported by the Austrian Science Fund (FWF), grant P23245-N18.

2 Daniel Krenn is supported by the Austrian Science Fund (FWF), project W1230 doctoral program “Discrete Mathematics”.

0022-314X/$ – see front matter © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jnt.2013.06.002
1. Introduction

Fix a prime p and let $n \in \mathbb{N}$. Every polynomial $f \in \mathbb{Z}[x]$ defines a function from $\mathbb{Z}_{p^n} = \mathbb{Z}/p^n\mathbb{Z}$ to itself. If this function happens to be bijective, it is called a polynomial permutation of \mathbb{Z}_{p^n}. The polynomial permutations of \mathbb{Z}_{p^n} form a group (G_n, \circ) with respect to composition. The order of this group has been known since at least 1921 (Kempner [10]) to be

$$|G_2| = p!(p - 1)^p$$

and

$$|G_n| = p!(p - 1)^p p^{\sum_{k=3}^{n} \beta(k)} \quad \text{for } n \geq 3,$$

where $\beta(k)$ is the least n such that p^k divides $n!$, but the structure of (G_n, \circ) is elusive. (See, however, Nöbauer [15] for some partial results.) Since the order of G_n is divisible by a high power of $(p - 1)$ for large p, even the number of Sylow p-groups is not obvious.

We will show that there are $(p - 1)!(p - 1)^{p-2}$ Sylow p-groups of G_n and describe these Sylow p-groups, see Theorem 5.1 and Corollary 5.2.

Some notation: p is a fixed prime throughout. A function $g: \mathbb{Z}_{p^n} \to \mathbb{Z}_{p^n}$ arising from a polynomial in $\mathbb{Z}_{p^n}[x]$ or, equivalently, from a polynomial in $\mathbb{Z}[x]$, is called a polynomial function on \mathbb{Z}_{p^n}. We denote by (F_n, \circ) the monoid with respect to composition of polynomial functions on \mathbb{Z}_{p^n}. By monoid, we mean semigroup with an identity element. Let (G_n, \circ) be the group of units of (F_n, \circ), which is the group of polynomial permutations of \mathbb{Z}_{p^n}.

Since every function induced by a polynomial preserves congruences modulo ideals, there is a natural epimorphism mapping polynomial functions on $\mathbb{Z}_{p^{n+1}}$ onto polynomial functions on \mathbb{Z}_{p^n}, and we write it as $\pi_n: F_{n+1} \to F_n$. If f is a polynomial in $\mathbb{Z}[x]$ (or in $\mathbb{Z}_{p^m}[x]$ for $m \geq n$) we denote the polynomial function on $\mathbb{Z}_{p^n}[x]$ induced by f by $[f]_{p^n}$.

The order of F_n and that of G_n have been determined by Kempner [10] in a rather complicated manner. His results were cast into a simpler form by Nöbauer [14] and Keller and Olson [9] among others. Since then there have been many generalizations of the order formulas to more general finite rings [16,13,2,6,1,8,7]. Also, polynomial permutations in several variables (permutations of $(\mathbb{Z}_{p^n})^k$ defined by k-tuples of polynomials in k variables) have been looked into [5,4,19,17,18,11].

2. Polynomial functions and permutations

To put things in context, we recall some well-known facts, to be found, among other places, in [10,14,3,9]. The reader familiar with polynomial functions on finite rings is encouraged to skip to Section 3. Note that we do not claim anything in Section 2 as new.

Definition. For p prime and $n \in \mathbb{N}$, let

$$\alpha_p(n) = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor$$

and

$$\beta_p(n) = \min\{m \mid \alpha_p(m) \geq n\}.$$

If p is fixed, we just write $\alpha(n)$ and $\beta(n)$.
Notation. For $k \in \mathbb{N}$, let $(x)_k = x(x - 1) \ldots (x - k + 1)$ and $(x)_0 = 1$. We denote p-adic valuation by v_p.

2.1 Fact.

1. $\alpha_p(n) = v_p(n!)$.
2. For $1 \leq n \leq p$, $\beta_p(n) = np$ and for $n > p$, $\beta_p(n) < np$.
3. For all $n \in \mathbb{Z}$, $v_p((n)_k) \geq \alpha_p(k)$; and $v_p((k)_k) = v_p(k!) = \alpha_p(k)$.

Proof. Easy. □

Remark. The sequence $(\beta_p(n))_{n=1}^{\infty}$ is obtained by going through the natural numbers in increasing order and repeating each $k \in \mathbb{N}$ $v_p(k)$ times. For instance, $\beta_2(n)$ for $n \geq 1$ is: 2, 4, 6, 8, 8, 8, 10, 12, 12, 14, 16, 16, 16, 16, 18, 20, 20, …

The falling factorials $(x)_0 = 1$, $(x)_k = x(x - 1) \ldots (x - k + 1)$, $k > 0$, form a basis of the free \mathbb{Z}-module $\mathbb{Z}[x]$, and representation with respect to this basis gives a convenient canonical form for a polynomial representing a given polynomial function on \mathbb{Z}_p^n.

2.2 Fact. (Cf. Keller and Olson [9].) A polynomial $f \in \mathbb{Z}[x]$, $f = \sum_k a_k(x)_k$, induces the zero-function mod p^n if and only if $a_k \equiv 0 \mod p^{n-\alpha(k)}$ for all k (or, equivalently, for all $k < \beta(n)$).

Proof. Induction on k using the facts that $(m)_k = 0$ for $m < k$, that $v_p((n)_k) \geq \alpha_p(k)$ for all $n \in \mathbb{Z}$, and that $v_p((k)_k) = v_p(k!) = \alpha_p(k)$. □

2.3 Corollary. (Cf. Keller and Olson [9].) Every polynomial function on \mathbb{Z}_p^n is represented by a unique $f \in \mathbb{Z}[x]$ of the form $f = \sum_{k=0}^{\beta(n)-1} a_k(x)_k$, with $0 \leq a_k < p^{n-\alpha(k)}$ for all k.

Comparing the canonical forms of polynomial functions mod p^n with those mod p^{n-1} we see that every polynomial function mod p^{n-1} gives rise to $p^{\beta(n)}$ different polynomial functions mod p^n:

2.4 Corollary. (See cf. Keller and Olson [9].) Let (F_n, \circ) be the monoid of polynomial functions on \mathbb{Z}_p^n with respect to composition and $\pi_n : F_{n+1} \to F_n$ the canonical projection.

1. For all $n \geq 1$ and for each $f \in F_n$ we have $|\pi_n^{-1}(f)| = p^{\beta(n+1)}$.
2. For all $n \geq 1$, the number of polynomial functions on \mathbb{Z}_p^n is

$$|F_n| = p^{\sum_{k=1}^n \beta(k)}.$$

Notation. We write $[f]_{p^n}$ for the function defined by $f \in \mathbb{Z}[x]$ on \mathbb{Z}_p^n.

2.5 Lemma. Every polynomial \(f \in \mathbb{Z}[x] \) is uniquely representable as

\[
 f(x) = f_0(x) + f_1(x)(x^p - x) + f_2(x)(x^p - x)^2 + \cdots + f_m(x)(x^p - x)^m + \cdots
\]

with \(f_m \in \mathbb{Z}[x], \deg f_m < p, \) for all \(m \geq 0. \) Now let \(f, g \in \mathbb{Z}[x]. \)

1. If \(n \leq p, \) then \([f]_p^n = [g]_p^n\) is equivalent to: \(f_k = g_k \mod p^{n-k}\mathbb{Z}[x] \) for \(0 \leq k < n. \)
2. \([f]_p^2 = [g]_p^2\) is equivalent to: \(f_0 = g_0 \mod p^2\mathbb{Z}[x] \) and \(f_1 = g_1 \mod p\mathbb{Z}[x]. \)
3. \([f]_p = [g]_p\) and \([f']_p = [g']_p\) is equivalent to: \(f_0 = g_0 \mod p\mathbb{Z}[x] \) and \(f_1 = g_1 \mod p\mathbb{Z}[x]. \)

Proof. The canonical representation is obtained by repeated division with remainder by \((x^p - x),\) and uniqueness follows from uniqueness of quotient and remainder of polynomial division. Note that \([f]_p = [f_0]_p\) and \([f']_p = [f'_0 - f_1]_p.\) This gives (3).

Denote by \(f \sim g \) the equivalence relation \(f_k = g_k \mod p^{n-k}\mathbb{Z}[x] \) for \(0 \leq k < n. \) Then \(f \sim g \) implies \([f]_p^n = [g]_p^n.\) There are \(p^{p+2p+3p+\cdots+np} \) equivalence classes of \(\sim \) and \(p^\beta(1) + p^\beta(2) + p^\beta(3) + \cdots + p^\beta(n) \) different \([f]_p^n.\) For \(k \leq p, \) \(\beta(k) = kp. \) Therefore the equivalence relations \(f \sim g \) and \([f]_p^n = [g]_p^n\) coincide. This gives (1), and (2) is just the special case \(n = 2. \)

We can rephrase this in terms of ideals of \(\mathbb{Z}[x]. \)

2.6 Corollary. For every \(n \in \mathbb{N}, \) consider the two ideals of \(\mathbb{Z}[x] \)

\[
 I_n = \{ f \in \mathbb{Z}[x] \mid f(\mathbb{Z}) \subseteq p^n\mathbb{Z} \} \quad \text{and} \quad J_n = \{ p^{n-k}(x^p - x)^k \mid 0 \leq k \leq n \}.
\]

Then \([\mathbb{Z}[x]: I_n] = p^{\beta(1) + \beta(2) + \cdots + \beta(n)} \) and \([\mathbb{Z}[x]: J_n] = p^{p+2p+3p+\cdots+np}. \) Therefore, \(J_n = I_n \) for \(n \leq p, \) whereas for \(n > p, \) \(J_n \) is properly contained in \(I_n. \)

Proof. \(J_n \subseteq I_n. \) The index of \(J_n \) in \(\mathbb{Z}[x] \) is \(p^{p+2p+3p+\cdots+np}, \) because \(f \in J_n \) if and only if \(f_k = 0 \mod p^{n-k}\mathbb{Z}[x] \) for \(0 \leq k < n \) in the canonical representation of Lemma 2.5. The index of \(I_n \) in \(\mathbb{Z}[x] \) is \(p^{\beta(1) + \beta(2) + \cdots + \beta(n)} \) by Corollary 2.4(2) and \([\mathbb{Z}[x]: I_n] < [\mathbb{Z}[x]: J_n]\) if and only if \(n > p \) by Fact 2.1(2).

2.7 Fact. (Cf. McDonald [12]) Let \(n \geq 2. \) The function on \(\mathbb{Z}_{p^n} \) induced by a polynomial \(f \in \mathbb{Z}[x] \) is a permutation if and only if

1. \(f \) induces a permutation of \(\mathbb{Z}_p, \) and
2. the derivative \(f' \) has no zero mod \(p. \)

2.8 Lemma. Let \([f]_{p^n}\) and \([f]_p\) be the functions defined by \(f \in \mathbb{Z}[x] \) on \(\mathbb{Z}_{p^n} \) and \(\mathbb{Z}_p, \) respectively, and \([f']_p\) the function defined by the formal derivative of \(f \) on \(\mathbb{Z}_p. \) Then
(1) \([f]_p^2\) determines not just \([f]_p\), but also \([f']_p\).
(2) Let \(n \geq 2\). Then \([f]_p^n\) is a permutation if and only if \([f]_p^2\) is a permutation.
(3) For every pair of functions \((\alpha, \beta)\), \(\alpha: \mathbb{Z}_p \rightarrow \mathbb{Z}_p\), \(\beta: \mathbb{Z}_p \rightarrow \mathbb{Z}_p\), there are exactly \(p^p\) polynomial functions \([f]_p^2\) on \(\mathbb{Z}_p^2\) with \([f]_p = \alpha\) and \([f']_p = \beta\).
(4) For every pair of functions \((\alpha, \beta)\), \(\alpha: \mathbb{Z}_p \rightarrow \mathbb{Z}_p\) bijective, \(\beta: \mathbb{Z}_p \rightarrow \mathbb{Z}_p \setminus \{0\}\), there are exactly \(p^p\) polynomial permutations \([f]_p^2\) on \(\mathbb{Z}_p^2\) with \([f]_p = \alpha\) and \([f']_p = \beta\).

Proof. (1) and (3) follow immediately from Lemma 2.5 for \(n = 2\) and (2) and (4) then follow from Fact 2.7.

2.9 Remark. Fact 2.7 and Lemma 2.8(2) imply that

(1) for all \(n \geq 1\), the image of \(G_{n+1}\) under \(\pi_n: F_{n+1} \rightarrow F_n\) is contained in \(G_n\), and
(2) for all \(n \geq 2\), the inverse image of \(G_n\) under \(\pi_n: F_{n+1} \rightarrow F_n\) is \(G_{n+1}\).

We denote by \(\pi_n: G_{n+1} \rightarrow G_n\) the restriction of \(\pi_n\) to \(G_n\). This is the canonical epimorphism from the group of polynomial permutations on \(\mathbb{Z}_{p^{n+1}}\) onto the group of polynomial permutations on \(\mathbb{Z}_{p^n}\).

The above remark allows us to draw conclusions on the projective system of groups \(G_n\) from the information in Corollary 2.4 concerning the projective system of monoids \(F_n\).

2.10 Corollary. Let \(n \geq 2\), and \(\pi_n: G_{n+1} \rightarrow G_n\) the canonical epimorphism from the group of polynomial permutations on \(\mathbb{Z}_{p^{n+1}}\) onto the group of polynomial permutations on \(\mathbb{Z}_{p^n}\). Then

\[|\ker(\pi_n)| = p^{\beta(n+1)}. \]

2.11 Corollary. (See cf. Kempner [10] and Keller and Olson [9].) The number of polynomial permutations on \(\mathbb{Z}_{p^2}\) is

\[|G_2| = p!(p-1)^pp^p, \]

and for \(n \geq 3\) the number of polynomial permutations on \(\mathbb{Z}_{p^2}\) is

\[|G_n| = p!(p-1)^pp^p\sum_{k=3}^{n} \beta(k). \]

Proof. In the canonical representation of \(f \in \mathbb{Z}[x]\) in Lemma 2.5, there are \(p!(p-1)^p\) choices of coefficients mod \(p\) for \(f_0\) and \(f_1\) such that the criteria of Fact 2.7 for a polynomial permutation on \(\mathbb{Z}_{p^2}\) are satisfied. And for each such choice there are \(p^p\) possibilities for the coefficients of \(f_0\) mod \(p^2\). The coefficients of \(f_0\) mod \(p^2\) and those of \(f_1\) mod \(p\) then determine the polynomial function mod \(p^2\). So \(|G_2| = p!(p-1)^pp^p\). The formula for \(|G_n|\) then follows from Corollary 2.10.
This concludes our review of polynomial functions and polynomial permutations on \mathbb{Z}_p^n. We will now introduce a homomorphic image of G_2 whose Sylow p-groups bijectively correspond to the Sylow p-groups of G_n for any $n \geq 2$.

3. A group between G_1 and G_2

Into the projective system of monoids (F_n, \circ) we insert an extra monoid E between F_1 and F_2 by means of monoid-epimorphisms $\theta: F_2 \to E$ and $\psi: E \to F_1$ with $\psi \theta = \pi_1$,

$$ F_1 \leftarrow E \leftarrow F_2 \leftarrow F_3 \leftarrow \ldots. $$

The restrictions of θ to G_2 and of ψ to the group of units H of E will be group-epimorphisms, so that we also insert an extra group H between G_1 and G_2 into the projective system of the G_i,

$$ G_1 \leftarrow H \leftarrow G_2 \leftarrow G_3 \leftarrow \ldots. $$

In the following definition of E and H, f and f' are just two different names for functions. The connection with polynomials and their formal derivatives suggested by the notation will appear when we define θ and ψ.

Definition. We define the semigroup (E, \circ) by

$$ E = \{(f, f') \mid f: \mathbb{Z}_p \to \mathbb{Z}_p, f': \mathbb{Z}_p \to \mathbb{Z}_p\} $$

(where f and f' are just symbols) with law of composition

$$ (f, f') \circ (g, g') = (f \circ g, (f' \circ g) \cdot g'). $$

Here $(f \circ g)(x) = f(g(x))$ and $((f' \circ g) \cdot g')(x) = f'(g(x)) \cdot g'(x)$.

We denote by (H, \circ) the group of units of E.

The following facts are easy to verify:

3.1 Lemma.

(1) The identity element of E is $(\iota, 1)$, with ι denoting the identity function on \mathbb{Z}_p and 1 the constant function 1.

(2) The group of units of E has the form

$$ H = \{(f, f') \mid f: \mathbb{Z}_p \to \mathbb{Z}_p \text{ bijective}, f': \mathbb{Z}_p \to \mathbb{Z}_p \setminus \{0\}\}. $$
(3) The inverse of \((g,g') \in H\) is
\[
(g,g')^{-1} = \left(g^{-1}, \frac{1}{g' \circ g^{-1}} \right),
\]
where \(g^{-1}\) is the inverse permutation of the permutation \(g\) and \(1/a\) stands for the multiplicative inverse of a non-zero element \(a \in \mathbb{Z}_p\), such that
\[
\left(\frac{1}{g' \circ g^{-1}} \right)(x) = \frac{1}{g'(g^{-1}(x))}
\]
means the multiplicative inverse in \(\mathbb{Z}_p \setminus \{0\}\) of \(g'(g^{-1}(x))\).

Note that \(H\) is a semidirect product of (as the normal subgroup) a direct sum of \(p\) copies of the cyclic group of order \(p - 1\) and (as the complement acting on it) the symmetric group on \(p\) letters, \(S_p\), acting on the direct sum by permuting its components. In combinatorics, one would call this a wreath product (designed to act on the left) of the abstract group \(C_{p-1}\) by the permutation group \(S_p\) with its standard action on \(p\) letters. (Group theorists, however, have a narrower definition of wreath product, which is not applicable here.)

Now for the homomorphisms \(\theta\) and \(\psi\).

Definition. We define \(\psi: E \to F_1\) by \(\psi(f,f') = f\). As for \(\theta: F_2 \to E\), given an element \([g]_p^2 \in F_2\), set \(\theta([g]_p^2) = ([g]_p, [g']_p)\). \(\theta\) is well defined by Lemma 2.8(1).

3.2 Lemma.

(i) \(\theta: F_2 \to E\) is a monoid-epimorphism.

(ii) The inverse image of \(H\) under \(\theta: F_2 \to E\) is \(G_2\).

(iii) The restriction of \(\theta\) to \(G_2\) is a group-epimorphism \(\theta: G_2 \to H\) with \(|\ker(\theta)| = p^p\).

(iv) \(\psi: E \to F_1\) is a monoid-epimorphism and \(\psi\) restricted to \(H\) is a group-epimorphism \(\psi: H \to G_1\).

Proof. (i) follows from Lemma 2.8(3) and (ii) from Fact 2.7. (iii) follows from Lemma 2.8(4). Finally, (iv) holds because every function on \(\mathbb{Z}_p\) is a polynomial function and every permutation of \(\mathbb{Z}_p\) is a polynomial permutation.

4. Sylow subgroups of \(H\)

We will first determine the Sylow \(p\)-groups of \(H\). The Sylow \(p\)-groups of \(G_n\) for \(n \geq 2\) are obtained in the next section as the inverse images of the Sylow \(p\)-groups of \(H\) under the epimorphism \(G_n \to H\).
4.1 Lemma. Let C_0 be the subgroup of S_p generated by the p-cycle $(0 1 2 \ldots p - 1)$. Then one Sylow p-subgroup of H is

$$S = \{(f, f') \in H \mid f \in C_0, \ f' = 1\},$$

where $f' = 1$ means the constant function 1. The normalizer of S in H is

$$N_H(S) = \{(g, g') \mid g \in N_{S_p}(C_0), \ g' a \ non-zero \ constant\}.$$

Proof. As $|H| = p!(p - 1)^p$, and S is a subgroup of H of order p, S is a Sylow p-group of H. Conjugation of $(f, f') \in S$ by $(g, g') \in H$ (using the fact that $f' = 1$) gives

$$(g, g')^{-1}(f, f')(g, g') = \left(g^{-1}, \frac{1}{g' \circ g^{-1}}\right)\left(f \circ g, g'\right) = \left(g^{-1} \circ f \circ g, \frac{g'}{g' \circ g^{-1} \circ f \circ g}\right).$$

The first coordinate of $(g, g')^{-1}(f, f')(g, g')$ being in C_0 for all $(f, f') \in S$ is equivalent to $g \in N_{S_p}(C_0)$. The second coordinate of $(g, g')^{-1}(f, f')(g, g')$ being the constant function 1 for all $(f, f') \in S$ is equivalent to

$$\forall x \in \mathbb{Z}_p, \quad g'(x) = g'(g^{-1}(f(g(x))))$$

which is equivalent to g' being constant on every cycle of $g^{-1}f$, which is equivalent to g' being constant on \mathbb{Z}_p, since f can be chosen to be a p-cycle. □

4.2 Lemma. Another way of describing the normalizer of S in H is

$$N_H(S) = \{(g, g') \in H \mid \exists k \neq 0 \ \forall a, b, \ g(a) - g(b) = k(a - b); \ g' a \ non-zero \ constant\}.$$

Therefore, $|N_H(S)| = p(p - 1)^2$ and $[H : N_H(S)] = (p - 1)!(p - 1)^{p-2}$.

Proof. Let $\sigma = (0 1 2 \ldots p - 1)$ and $g \in S_p$ then

$$g\sigma g^{-1} = (g(0) \ g(1) \ g(2) \ldots g(p - 1)).$$

Now $g \in N_{S_p}(C_0)$ if and only if, for some $1 \leq k < p$, $g\sigma g^{-1} = \sigma^k$, i.e.,

$$(g(0) \ g(1) \ g(2) \ldots g(p - 1)) = (0 \ k \ 2k \ldots (p - 1)k),$$

all numbers taken mod p. This is equivalent to $g(x + 1) = g(x) + k$ or

$$g(x + 1) - g(x) = k$$

and further equivalent to $g(a) - g(b) = k(a - b)$. Thus k and $g(0)$ determine $g \in N_{S_p}(C_0)$, and there are $(p - 1)$ choices for k and p choices for $g(0)$. Together with the $(p - 1)$ choices for the non-zero constant g' this makes $p(p - 1)^2$ elements of $N_H(S)$. □
4.3 Corollary. There are \((p - 1)! (p - 2)\) Sylow \(p\)-subgroups of \(H\).

4.4 Theorem. The Sylow \(p\)-subgroups of \(H\) are in bijective correspondence with pairs \((C, \varphi)\), where \(C\) is a cyclic subgroup of order \(p\) of \(S_p\), \(\varphi : \mathbb{Z}_p \to \mathbb{Z}_p \setminus \{0\}\) is a function and \(\bar{\varphi}\) is the class of \(\varphi\) with respect to the equivalence relation of multiplication by a non-zero constant. The subgroup corresponding to \((C, \bar{\varphi})\) is

\[
S_{(C, \varphi)} = \left\{ (f, f') \in H \mid f \in C, \ f'(x) = \frac{\varphi(f(x))}{\varphi(x)} \right\}.
\]

Proof. Observe that each \(S_{(C, \varphi)}\) is a subgroup of order \(p\) of \(H\). Different pairs \((C, \bar{\varphi})\) give rise to different groups: Suppose \(S_{(C, \varphi)} = S_{(D, \bar{\psi})}\). Then \(C = D\) and for all \(x \in \mathbb{Z}_p\) and for all \(f \in C\) we get

\[
\frac{\varphi(f(x))}{\varphi(x)} = \frac{\psi(f(x))}{\psi(x)}.
\]

As \(C\) is transitive on \(\mathbb{Z}_p\) the latter condition is equivalent to

\[
\forall x, y \in \mathbb{Z}_p \quad \frac{\psi(x)}{\varphi(x)} = \frac{\psi(y)}{\varphi(y)},
\]

which means that \(\varphi = k\psi\) for a non-zero \(k \in \mathbb{Z}_p\).

There are \((p - 2)!\) cyclic subgroups of order \(p\) of \(S_p\), and \((p - 1)^{p-1}\) equivalence classes \(\bar{\varphi}\) of functions \(\varphi : \mathbb{Z}_p \to \mathbb{Z}_p \setminus \{0\}\). So the number of pairs \((C, \bar{\varphi})\) equals \((p - 1)! (p - 2)\), which is the number of Sylow \(p\)-groups of \(H\), by the preceding corollary. \(\square\)

4.5 Proposition. If \(p\) is an odd prime then the intersection of all Sylow \(p\)-subgroups of \(H\) is trivial, i.e.,

\[
\bigcap_{(C, \varphi)} S_{(C, \varphi)} = \{(1, 1)\}.
\]

If \(p = 2\) then \(|H| = 2\) and the intersection of all Sylow 2-subgroups of \(H\) is \(H\) itself.

Proof. Let \(p\) be an odd prime, and let \((f, f') \in \bigcap_{(C, \varphi)} S_{(C, \varphi)}\). Suppose \(f\) is not the identity function and let \(k \in \mathbb{Z}_p\) such that \(f(k) \neq k\).

Note that \(\varphi\) in \((C, \varphi)\) is arbitrary, apart from the fact that 0 is not in the image. Therefore, and because \(p \geq 3\), among the various \(\varphi\) there occur functions \(\vartheta\) and \(\eta\) with \(\vartheta(k) = \eta(k)\) and \(\vartheta(f(k)) \neq \eta(f(k))\). Now \((f, f') \in S_{(D, \bar{\vartheta})} \cap S_{(E, \bar{\eta})}\) for any cyclic subgroups \(D\) and \(E\) of \(S_p\) of order \(p\).
Therefore
\[
\frac{\vartheta(f(k))}{\vartheta(k)} = f'(k) = \frac{\eta(f(k))}{\eta(k)},
\]
and hence \(\vartheta(f(k)) = \eta(f(k))\), a contradiction. Thus \(f\) is the identity and therefore \(f' = 1\).

If \(p = 2\) then \(|H| = 2\) and therefore the one and only Sylow 2-subgroup of \(H\) is \(H\).

In the case \(p \geq 5\), the lemma above can be proved in a simpler way: There is more than one cyclic group of order \(p\), so for \((f, f') \in \bigcap_{(C, \varphi)} S(C, \varphi)\), there are distinct cyclic groups \(D\) and \(E\) of order \(p\) with \(f \in D \cap E\). Therefore \(f\) has to be the identity.

5. Sylow subgroups of \(G_n\) and of the projective limit

Again we consider the projective system of finite groups

\[
G_1 \xleftarrow{\psi} H \xleftarrow{\theta} G_2 \xleftarrow{\pi_2} \cdots \xleftarrow{\pi_{n-1}} G_n \xleftarrow{\pi_n}
\]

where \((G_n, \circ)\) is the group of polynomial permutations on \(\mathbb{Z}_{p^n}\) (with respect to composition of functions) and \(H\) is the group defined in section 3. Let \(G = \lim\leftarrow G_n\) be the projective limit of this system. Recall that a Sylow \(p\)-group of a pro-finite group is defined as a maximal group consisting of elements whose order in each of the finite groups in the projective system is a power of \(p\).

5.1 Theorem.

(i) Let \((G_n, \circ)\) be the group of polynomial permutations on \(\mathbb{Z}_{p^n}\) with respect to composition. If \(n \geq 2\) there are \((p-1)!/(p-1)^{p-2}\) Sylow \(p\)-groups of \(G_n\). They are the inverse images of the Sylow \(p\)-groups of \(H\) (described in Theorem 4.4) under the canonical projection \(\pi: G_n \to H\), with \(\pi = \theta \pi_2 \cdots \pi_{n-1}\).

(ii) Let \(G = \lim\leftarrow G_n\). There are \((p-1)!/(p-1)^{p-2}\) Sylow \(p\)-groups of \(G\), which are the inverse images of the Sylow \(p\)-groups of \(H\) (described in Theorem 4.4) under the canonical projection \(\pi: G \to H\).

Proof. In the projective system \(G_1 \xleftarrow{\psi} H \xleftarrow{\theta} G_2 \xleftarrow{\pi_2} \cdots \xleftarrow{\pi_{n-1}} G_n\) the kernel of the group-epimorphism \(G_n \to H\) is a finite \(p\)-group for every \(n \geq 2\), because for \(n \geq 2\) the kernel of \(\pi_n: G_{n+1} \to G_n\) is of order \(p^{\beta(n+1)}\) by Corollary 2.10 \(\theta: G_2 \to H\) is of order \(p^p\) by Lemma 3.2(iii). So the Sylow \(p\)-groups of \(G_n\) for \(n \geq 2\) are just the inverse images of the Sylow \(p\)-groups of \(H\) and, likewise, the Sylow \(p\)-groups of the projective limit \(G\) are just the inverse images of the Sylow \(p\)-groups of \(H\), whose number was determined in Corollary 4.3.

If we combine this information with the description of the Sylow \(p\)-groups of \(H\) in Theorem 4.4 we get the following explicit description of the Sylow \(p\)-groups of \(G_n\). Recall
that \([f]_{p^n}\) denotes the function induced on \(\mathbb{Z}_{p^n}\) by the polynomial \(f\) in \(\mathbb{Z}[x]\) (or in \(\mathbb{Z}_{p^n}[x]\) for some \(m \geq n\)).

5.2 Corollary. Let \(n \geq 2\). Let \(G_n\) be the group (with respect to composition) of polynomial permutations on \(\mathbb{Z}_{p^n}\). The Sylow \(p\)-groups of \(G_n\) are in bijective correspondence with pairs \((C, \bar{\varphi})\), where \(C\) is a cyclic subgroup of order \(p\) of \(S_p\), \(\varphi: \mathbb{Z}_p \to \mathbb{Z}_p \setminus \{0\}\) is a function and \(\bar{\varphi}\) its class with respect to the equivalence relation of multiplication by a non-zero constant. The subgroup corresponding to \((C, \bar{\varphi})\) is

\[
S_{(C, \bar{\varphi})} = \left\{ [f]_{p^n} \in G_n \mid [f]_p \in C, \ [f'']_p(x) = \frac{\varphi([f]_p(x))}{\varphi(x)} \right\}.
\]

Example. A particularly easy to describe Sylow \(p\)-group of \(G_n\) is the one corresponding to \((C, \varphi)\) where \(\varphi\) is a constant function and \(C\) the subgroup of \(S_p\) generated by \((0 \ 1 \ 2 \ldots p-1)\). It is the inverse image of \(S\) defined in Lemma 4.1 and it consists of the functions on \(\mathbb{Z}_{p^n}\) induced by polynomials \(f\) such that the formal derivative \(f'\) induces the constant function 1 on \(\mathbb{Z}_p\) and the function induced by \(f\) itself on \(\mathbb{Z}_{p^n}\) is a power of \((0 \ 1 \ 2 \ldots p-1)\).

Combining Theorem 5.1 with Proposition 4.5 we obtain the following description of the intersection of all Sylow \(p\)-groups of \(G_n\) for odd \(p\).

5.3 Corollary. Let \(p\) be an odd prime.

(i) For \(n \geq 2\) the intersection of all Sylow \(p\)-groups of \(G_n\) is the kernel of the projection \(\pi: G \to H\).

(ii) Likewise, the intersection of all Sylow \(p\)-groups of \(G\) is the kernel of the canonical epimorphism of \(G\) onto \(H\).

(iii) The intersection of all Sylow \(p\)-groups of \(G_n\) (\(n \geq 2\)) can also be described as the normal subgroup

\[
N = \{ [f]_{p^n} \in G_n \mid [f]_p = \iota, \ [f'']_p = 1 \},
\]

where \(\iota\) denotes the identity function on \(\mathbb{Z}_p\). Its order is \(p^p p \sum_{k=3}^{n} \beta(k)\) and its index in \(G_n\) (for \(n \geq 2\)) is

\[
\]

(iv) Likewise, the index of the intersection of all Sylow \(p\)-subgroups of \(G\) in \(G\) is \(p!(p - 1)^p\).

Proof. (i) and (ii) follow immediately from Theorem 5.1 and Proposition 4.5. To see (iii), let \(\pi\) be the projection from \(G_n\) to \(H\) (that is \(\pi = \theta \pi_2 \ldots \pi_{n-1}\)). Then \(N\) is the inverse...
image of \{(ι, 1)\}, the identity element of \(H\), under \(π\), and is therefore the intersection of the Sylow \(p\)-groups of \(G_n\) by (i). As the kernel of a group homomorphism, \(N\) is a normal subgroup.

The order of \(N\) is the order of the kernel of \(π\), which is the product of \(p^\beta_1\) (the order of the kernel of \(θ\)) and \(p^\beta_k\) (the order of the kernel of \(π_{k−1}\)) for \(3 \leq k \leq n\). Finally, the index of the kernel of the homomorphism of \(G_n\) onto \(H\) is the order of \(H\) which is \(p!(p − 1)^p\). □

Acknowledgments

The authors wish to thank W. Herfort for stimulating discussions.

References

[4] Z. Chen, On polynomial functions from \(\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}\) to \(\mathbb{Z}_m\), Discrete Math. 162 (1996) 67–76.