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1. Introduction

Let D be an integral domain, £ C D, and R a subring of [[ cp
can be interpreted as functions from F to D and, consequently, we call R a ring of functions from F to D.

D, containing D. The elements of R

We will investigate the prime spectra of such rings of functions. We obtain, for quite general R, a partial
description of the prime spectrum, cf. Theorems 3.7 and 5.3, and in special cases a complete characterization,
cf. Corollary 6.5.

Our motivation is the spectrum of a ring of integer-valued polynomials: For D an integral domain with
quotient field K, let Int(D) = {f € K|[z| | /(D) C D} be the ring of integer-valued polynomials on D. More
generally, when K is understood, we let Int(A,B) = {f € K[z] | f(A) C B} for A,B C K.

If D is a Noetherian one-dimensional domain, a celebrated theorem of Chabert [1, Ch. V| states that
every prime ideal of Int(D) lying over a maximal ideal M of finite index in D is maximal and of the

form
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M, = {f € Int(D) | f(a) € NI},

where « is an element of the M-adic completion lA)M of D and M the maximal ideal of ﬁ]\[.
In fact, Chabert showed two separate statements independently — both under the assumption that D is
Noetherian and one-dimensional and M a maximal ideal of finite index of D:

(1) Every maximal ideal of Int(D) containing Int(D, M) is of the form M, for some o € D).
(2) Every maximal ideal of Int(D) lying over M contains Int(D, M).

For a simplified proof of Chabert’s result, see [4], Lemma 4.4 and the remark following it.

We will show that a modified version of statement (1) holds in far greater generality, for rings of functions.
The modification consists in replacing elements of the M-adic completion by ultrafilters.

Whether (2) holds or not for a particular D and a particular subring of D¥ will have to be examined
separately. It is, in some sense, a question of density of the subring in the product HeEE D.

We will work in the following setting:

Definition 1.1. Let D be a commutative ring and E C D. Let R be a commutative ring and ¢: R —= [[..p D
a monomorphism of rings. ¢ allows us to interpret the elements of R as functions from E to D.

If all constant functions are contained in ¢(R), we call the pair (R, ) a ring of functions from E to D.
We use R = R(E, D) (where ¢ is understood) to denote a ring of functions from E to D.

Remark 1.2. For our considerations it is vital that R = R(E, D) contain all constant functions, because we
will make extensive use of the following fact: when Z is an ideal of R = R(E,D), f € T and g € D[z] a
polynomial with zero constant term, then g(f) € Z, and similarly, if g is a polynomial in several variables
over D with zero constant term, and an element of Z is substituted for each variable in g, then, an element
of Z results.

Let us note that considerable research has been done on the spectrum of a power of a ring D¥ = [lce D
or a product of rings []..p De. Gilmer and Heinzer [5, Prop. 2.3] have determined the spectrum of an
infinite product of local rings, and Levy, Loustaunau and Shapiro (8] that of an infinite power of Z. Our
focus here is not on the full product of rings, but on comparatively small subrings and the question of how
much information about the spectrum of a ring can be obtained from its embedding in a power of a domain.

One ring can be embedded in different products: Int(D) can be seen as a ring of functions from K to
K as well as a ring of functions from D to D. We will glean a lot more information about the spectrum of
Int(D) from the second interpretation than from the first.

2. Prime ideals corresponding to ultrafilters

Let R = R(E, D) be a ring of functions from F to D as in Definition 1.1. We will now make precise the
concept of ideals corresponding to ultrafilters, and the connection to ultraproducts HlfeE(D/]\/[), where M is
a maximal ideal of D, and U an ultrafilter on E. First a quick review of filters, ultrafilters and ultraproducts:

Definition 2.1. Let S be a set. A non-empty collection F of subsets of S is called a filter on S if
(1) 0 ¢ F.

(2) A,B € F implies ANB € F.

(3) AC C C S with A € F implies C € F.

A filter F on S is called an ultrafilter on S if, for every C' C S, either C € F or S\ C € F.
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Let S be a fixed set and P(S) its power-set. For C' € P(S), a superset of C is a set D € P(S) with
C C D CS. A collection C of subsets of S is said to have the finite intersection property if the intersection

of any finitely many members of C is non-empty.

Remark 2.2. Clearly, a necessary and sufficient condition for C C P(S) to be contained in a filter on S
is that C satisfies the finite intersection property. If the finite intersection property is satisfied, then the

supersets of finite intersections of members of C form a filter.

Although, strictly speaking, we do not need ultraproducts to prove our results, we will nevertheless
introduce them, because they provide context, in particular to Lemma 2.6, and to sections 3 and 5.

Definition 2.3. Let S be an index set and U an ultrafilter on S. Suppose we are given, for each s € S,
a ring R,. Then the ultraproduct of rings Hljes R, is defined as the direct product HSES R, modulo the
congruence relation

(re)ses ~ (ts)ses <= {S es | Ts = ts} EU.

Ultraproducts of other algebraic structures are defined analogously. The usefulness of ultraproducts is
captured by the Theorem of Lo$ (cf. [6, Chpt. 3.2] or [7, Prop 1.6.14]) which states that an ultraproduct
HZ;{G g R satisfies a first-order formula if and only if the set of indices s for which R, satisfies the formula is
in U. Here first-order formula means a formula in the first-order language whose only non-logical symbols
(apart from the equality sign) are symbols for the algebraic operations; for instance, + and - in the case of
an ultraproduct of rings.

Definition 2.4. Let D be a domain, E C D, R = R(FE, D) a ring of functions, I an ideal of D and F a filter
on E.
For f € R(E,D), we let f~1(I) ={e € E| f(e) € I} and define

Ir ={f €eR(E,D) | f~(I) € F}

Remark 2.5. Let everything as in Definition 2.4, I, J ideals of D and F, G filters on E. Some easy conse-
quences of Definition 2.4 are:

(1) If I # D then Ir # R.

(2) Ir is an ideal of R containing R(E,I)={fe R | f(E) C I}.
B)ICJ=1IrCJr

(4) FCG=1IrClg

Lemma 2.6. Let D be a domain, E C D, and R = R(E, D) a ring of functions from E to D.
Then for every prime ideal P of D and every ultrafilter U on E, Py is a prime ideal of R.

Proof. Easy direct verification: let fg € Py; because P is a prime ideal of D, the inverse image of P under
f g is the union of f~!(P) and g~ (P). If the union of two sets is in an ultrafilter, then one of them must
be in the ultrafilter. Therefore, f € Py or g € Py. Also, Py cannot be all of R because it doesn’t contain

the constant function 1. 0O

One way of looking at Py is by considering the following commuting diagram of ring-homomorphisms,
where 7 and 71 mean applying the canonical projection in each factor of the product, and ¢ and o; mean
factoring through the defining congruence relation of an ultraproduct.
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R —F— [lece D — HZ;{GED

.

[.es(D/P) === TI/cx(D/P)

Py is the kernel of the following composition of ring homomorphisms:

p: R — HD

ecE

followed by the canonical projection

=~ [[p— [](0/P)

ecE ecE

and the canonical projection

u
o: [[(0/P)— [](D/P)

ecE ecE

Since D/P is an integral domain, any ultraproduct of copies of D/P is also an integral domain, by the

Theorem of Lo$. Therefore (0) is a prime ideal of ngE(D/P) and hence Py a prime ideal of R. We also

see that Py is the inverse image of a prime ideal of erE D under ¢, and further, of a prime ideal of the
ultraproduct HZ:GE D under oy o ¢.

3. The set of zero-loci mod M of an ideal of the ring of functions

As before, D is a domain with quotient field K, E C D and R = R(E, D) a ring of functions from E
to D as in Definition 1.1. Especially, recall from Definition 1.1 that R is assumed to contain all constant
functions.

Definition 3.1. For M C D and f € R = R(E, D), let
fYM) ={e€ E| f(e) e M}.
For an ideal M of D and an ideal Z of R, let
Zu@) ={f"'(M) | feT}

Recall from Definition 2.4 that for a filter F on E,

Mz ={f e R(E,D)| fY(M) e F}
Remark 3.2. Note that the above definition implies

) ICT=2u) < 2Zu(T)
(2) IC Mr < Zu(Z)CF
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Lemma 3.3. Let M be an ideal of D and Z an ideal of R. The following are equivalent:

(a) There exists a filter F on E such that T C M.
(b) Zr(Z) satisfies the finite intersection property.

Proof. If Z C My, then Z)/(Z) is contained in F and hence satisfies the finite intersection property.
Conversely, if Z)/(Z) satisfies the finite intersection property then, by Remark 2.2, the supersets of finite
intersections of sets in Zj/(Z) form a filter F on E for which Z3/(Z) C F and hence Z C Mr. O

In the case where R(E, D) = HeeE

see the papers by Gilmer and Heinzer [5, Prop. 2.3] (concerning local rings) and Levy, Loustaunau and

D is the ring of all functions from F to D, much more can be said;

Shapiro [8] (concerning D = Z).

For a field K that is not algebraically closed, we will need, for an arbitrary n > 2, an n-ary form that has
no zero but the trivial one. For this purpose, recall how to define a norm form: if L : K is an n-dimensional
field extension, multiplication by any w € L is a K-endomorphism 1, of L. For a fixed choice of a K-basis
of L, map every w € L to the determinant of the matrix of v, with respect to the chosen basis. This
mapping, regarded as a function of the coordinates of w with respect to the chosen basis, is easily seen to
be an n-ary form that has no zero but the trivial one.

Lemma 3.4. Let M be a mazimal ideal of D such that D /M is not algebraically closed. Then for every ideal
Z of R=R(E,D), Zy(Z) is closed under finite intersections.

Proof. Given f,g € Z, we show that there exists h € Z with
RN (M) = Y (M) ng Y (M).

Consider any finite-dimensional non-trivial field extension of D /M, and let n be the degree of the extension.
The norm form of this field extension is a homogeneous polynomial in n > 2 indeterminates whose only zero
in (D/M)™ is the trivial one. By identifying n — 1 variables, we get a binary form s € (D/M)|z,y| with no
zero in (D/M)? other than (0,0). Let s € D[z,y| be a binary form that reduces to 5 when the coefficients
are taken mod M.

Now, given f and g in Z, we set h = s(f, g). By the fact that R contains all constant functions, h is in Z.
Also, h(e) € M if and only if both f(e) € M and g(e) € M, as desired. O

Lemma 3.5. Let M be a mazimal ideal of D and R = R(E,D) a ring of functions such that every f € R
takes values in only finitely many residue classes mod M.
Then for every ideal T of R, Zn(T) is closed under finite intersections.

Proof. Again, given f,g € Z, we show that there exists h € Z with
A=Y (M) = fY (M) g~ (M).

Let A, B C D/M be finite sets of residue classes of D mod M such that f(E) is contained in the union
of A and g(F) in the union of B.

We can interpolate any function from (D/M)? to (D/M) at any finite set of arguments by a polynomial
in (D/M)[z,y]. Pick s € (D/M)]z,y] with 5(0,0) =0 and §(a,b) = 1 for all (a,b) € (A x B)\ {(0,0)}. Let
s € D[z, y] be a polynomial with zero constant coefficient that reduces to § when the coefficients are taken
mod M.

Now, given f and g in Z, we set h = s(f, g). By the fact that R contains all constant functions, h is in Z.
Also, h(e) € M if and only if both f(e) € M and g(e) € M, as desired. O
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Definition 3.6. Let R = R(E, D) be aring of functions and M an ideal of D. We call f € R an M-unit-valued
function if f(e) + M is a unit in D/M for every e € E.

Theorem 3.7. Let M be a mazimal ideal of D and I an ideal of R = R(E, D). Assume that either D /M is

not algebraically closed or that each function in R takes values in only finitely many residue classes mod M .

(1) Z is contained in an ideal of the form Mx for some filter F on E if and only if T contains no M -unit-
valued function.

(2) Every ideal Q of R that is mazimal with respect to not containing any M -unit-valued function is of the
form My for some ultrafilter U on E.

(3) In particular, every mazimal ideal of R that does not contain any M -unit-valued function is of the form
My for some ultrafilter U on E.

Proof. Ad (1). If Z is contained in an ideal of the form Mz, Z cannot contain any M-unit-valued function,
because F doesn’t contain the empty set.

Conversely, suppose that Z does not contain any M-unit-valued function. Then 0 ¢ Z,,(Z). By Lem-
mata 3.4 and 3.5, Zp7(Z) is closed under finite intersections. Zys(Z), therefore, satisfies the finite intersection
property. By Remark 2.2, Z)/(Z) is contained in a filter F on E. For this filter, Z C Mr, by Remark 3.2.

Ad (2). Suppose Q is maximal with respect to not containing any M-unit-valued function. By (1),
Q C My for some filter F. Refine F to an ultrafilter U. Then, by Remark 2.5, Q@ C Mr C My, and My
doesn’t contain any M-unit-valued function. Since Q is maximal with this property, Q = My,.

(3) is a special case of (2). O

4. A dichotomy of maximal ideals

In what follows, D is always a domain with quotient field K, E C D and R = R(F, D) a ring of functions
from F to D as in Definition 1.1. When the interpretation of R as a subring of HeeE D is understood, then
for M C D welet R(IE,M)={feR| f(E)C M}.

Proposition 4.1. Let M be a mazimal ideal of D and Q a mazimal ideal of R = R(E, D). Then ezxactly one
of the following two statements holds:

(1) Q contains R(E,M)={f€eR| f(E)C M}
(2) Q contains an element f with f(e) =1 mod M for alle € E.

Proof. The two cases are mutually exclusive, because any ideal Q satisfying both statements must contain 1.
Now suppose Q does not contain R(E, M). Let g € R(E, M) \ Q. By the maximality of Q,

1= h(z)g(z) + f(z)
for some h € R and f € Q. We see that f(z) = 1 —h(x)g(z) € Q satisfies f(e) =1 mod M for alle € E. O
Recall that a function f € R is called M-unit-valued if f(e) + M is a unit in D/M for every e € E.
Lemma 4.2. Let M be an ideal of D and Q an ideal of R = R(E, D). The following are equivalent:

(A) Q contains an element f with f(e) =1 mod M for alle € E.

(B) Q contains an M -unit-valued function that takes values in only finitely many residue classes mod M.
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Proof. To see that the a priori weaker statement implies the stronger, let ¢ € Q be an M-unit-valued
function taking only finitely many different values mod M. Let dy,...,d; € D be representatives of the
finitely many residue classes mod M intersecting g(E) non-trivially, and v € D an inverse mod M of
(—1)k+1d1 o dp.

Then

h(z) = H(g(:r) —d;) — (=1D)*dy ... dy

isin Q and h(e) = (=1)**1d; ... dy mod M for all e € E. Therefore f(z) = uh(z) € Q satisfies f(e) = 1
mod M forallee E. O

Proposition 4.3. Let M be a mazimal ideal of D and Q a mazimal ideal of R = R(E,D). If each f € R
takes values in only finitely many residue classes mod M (in particular, if D/M happens to be finite) then
exactly one of the following statements holds:

(1) Q contains R(E,M)={feR | f(E) C M}

(2) Q contains an M -unit-valued function.

Proof. This follows directly from Proposition 4.1 and Lemma 4.2. 0O

The Propositions in this section partition the maximal ideals of R lying over a maximal ideal M of D
into two types: those containing R(E, M) (the kernel of the restriction to R of the canonical projection
7 [loeg D — [locp(D/M)), and the others.

In some cases, it is known that all maximal ideals of R lying over M contain R(E, M), notably if
R = Int(D) and M is finitely generated and of finite index in D [1, Ch. V], [4, Lemma 4.4]. We will find a
sufficient condition for all maximal ideals of R lying over M to contain R(E, M) in Theorem 6.4.

We must not discount the possibility of a maximal ideal Q lying over M containing an M-unit-valued
function, however. If D is an infinite domain, D|[z] is embedded in D by mapping every polynomial to
the corresponding polynomial function. When D/M is not algebraically closed, then there are certainly
maximal ideals of D[z| lying over M that contain polynomials without a zero mod M.

5. Prime ideals containing R (E, M)

We are now in a position to characterize the prime ideals of R containing R(E, D) as being precisely the
ideals of the form M, for ultrafilters U on F, under the following hypothesis: every f € R takes values in
only finitely many residue classes of M.

This hypothesis may seem only marginally weaker than the assumption that D /M is finite. Note however,
that it is sometimes satisfied for infinite D/M under perfectly natural circumstances, for instance, when
E intersects only finitely many residue classes of M™ for each n € N (E precompact), and R consists of
functions that are uniformly M-adically continuous.

As in the case of integer-valued polynomials, we can show that every prime ideal of R(E, D) containing
R(E, M) is maximal under certain conditions, notably if D /M is finite. The proof for Int(D), when D/M
is finite [1, Lemma V.1.9.], carries over practically without change. Note that Definition 1.1 ensures that
every ring of functions R contains all constant functions — an essential requirement of the following proof.

Lemma 5.1. Let M be a mazimal ideal of D such that every function in R = R(E, D) takes values in only
finitely many residue classes mod M, and Q a prime ideal of R(E,D) containing R(E,M). Then Q is
mazimal and R/Q ts isomorphic to D /M.
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Proof. Let Q be a prime ideal of R(E, D) containing R(E, M), and A a system of representatives of D
mod M. It suffices to show that A (viewed as a set of constant functions) is also a system of representatives
of R mod Q. Let f € R(E,D) and ai,...,a, € A the representatives of those residue classes of M that
intersect f(E) non-trivially. Then []/_,(f — ;) is in R(E, M) C Q and, Q being prime, one of the factors
(f — a;) must be in Q. This shows that f is congruent mod Q to one of the constant functions ay, ..., a,,
and, in particular, to an element of A. Therefore, A is a system of representatives of R(E,D) mod Q. 0O

Lemma 5.2. Let R = R(E, D) a ring of functions and M a mazimal ideal of D such that every f € R takes
values in only finitely many residue classes of M. Let Z be a mazximal ideal of R.

Then I is contained in an ideal of the form Mg for a filter F on E if and only if R(E,M) C T.

Proof. R(E, M) C T is equivalent to Z not containing an M-unit-valued function, by Proposition 4.3. The
statement therefore follows from part (1) of Theorem 3.7. O

Theorem 5.3. Let R = R(E,D) a ring of functions, and M a mazimal ideal of D. If every f € R takes
values in only finitely many residue classes of M (and, in particular, if D/M is finite), then the prime ideals
of R containing R(E, M) are exactly the ideals of the form My with U an ultrafilter on E. Each of them is
mazimal and its residue field isomorphic to D/M.

Proof. Let Q be a prime ideal of R containing R(E, M). By Lemma 5.1, Q is maximal and R/Q is
isomorphic to D/M. By Lemma 5.2, Q C Mz for some filter F on E. F can be refined to an ultrafilter U
on E, and then Q C Mz C My # R, by Remark 2.5. Since Q is maximal, Q@ = My, follows.

Conversely, every ideal of the form My for an ultrafilter U on E is prime, by Lemma 2.6, and contains

R(E,M), by Remark 2.5. O

Note, in particular, that Theorems 3.7 and 5.3 apply to R = Int(E, D). In this way, we see, when M is a
maximal ideal of finite index in D, that prime ideals of Int(E, D) containing Int(D, M) are inverse images of
prime ideals of D¥ and ultimately come from ultrapowers of (D/M), as in the discussion after Lemma 2.6.

6. Divisible rings of functions

Let R C DF be a ring of functions and M a maximal ideal of D. We have seen that we can describe those
maximal ideals of R lying over M that contain R(E, M). We would like to know under what conditions
this holds for every maximal ideal of R lying over M.

In the case where M is a maximal ideal of finite index in a one-dimensional Noetherian domain D,
Chabert showed that every maximal ideal of Int(D) lying over M contains Int(D, M), cf. [1, Prop. V.1.11]
and [4, Lemma 3.3]. Once we know this, Theorem 5.3 is applicable. It can be used to give an alternative
proof of the fact that every prime ideal of Int(D) lying over M is maximal and of the form M, = {f €
Int(D) | f(a) € M} for an element a in the M-adic completion of D.

We will now generalize Chabert’s argument from integer-valued polynomials to a class of rings of functions
which we call divisible. Note that we do not have to restrict ourselves to Noetherian domains; we only require
the individual maximal ideal for which we study the primes of R lying over it to be finitely generated. It
is true that our questions only localize well when the domain is Noetherian, but we will pursue a different

course, not relying on localization.

Definition 6.1. Let R be a commutative ring and E C R. We call a ring of functions R C RF divisible if it
has the following property: If f € R is such that f(E) C c¢R for some non-zero ¢ € R, then every function
g € RE satisfying cg(z) = f(z) is also in R.
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We call R weakly divisible if for every f € R and every non-zero ¢ € R such that f(E) C cR, there exists
a function g € R with cg(z) = f(z).

If R is a domain, we note that g(z) in the above definition is unique and that, therefore, for subrings of
powers of domains, weakly divisible is equivalent to divisible.

Example 6.2.

(1) Int(E, D) is divisible. — This is our motivation.

(2) If D is a valuation domain with maximal ideal M then the ring of uniformly M-adically continuous
functions from E to D (E C D equipped with subspace topology of M-adic topology) is a divisible ring
of functions.

We now consider minimal prime ideals of non-zero principal ideals, that is, P containing some p # 0
such that there is no prime ideal strictly contained in P and containing p. If D is Noetherian, this condition
reduces to “ht(P) = 1”. In non-Noetherian domains, we find examples with ht(P) > 1, for instance, the

maximal ideal of a finite-dimensional valuation domain.

Lemma 6.3. Let R be a domain, P a finitely generated prime ideal that is a minimal prime of a non-zero
principal ideal (p) C P. Then there exist m € N and s € R\ P such that sP™ C pR.

Proof. In the localization Rp, Pp is the radical of pRp. Therefore, since P (and hence Pp) is finitely
generated, there exists m € N with Pp" C pRp and in particular P™ C pRp. The ideal P™ is also finitely
generated, by pi,...,pk, say. Let a; € Rp with p; = pa;. By considering the fractions a; = r;/s; (with
ri € Rand s; € R\P), and setting s = s1 -... - si, we see that sP™ C pR as desired. 0O

Theorem 6.4. Let D be a domain and P a finitely generated prime ideal that is a minimal prime of a
non-zero principal ideal. Let R C DF be a divisible ring of functions from E to D. Then every prime ideal
Q of R with QN D = P contains R(E, P).

Proof. Let f € R(E, P). Let p € P non-zero and such that there is no prime ideal P; with (p) C P C P.
By Lemma 6.3, there are m € N and s € D \ P such that sP™ C pD. Then sf™ € R(E,pD). Since R is
divisible, sf™ = pg for some g € R(E, D). Therefore, sf™ € pR(E,D) C Q. As Q is prime and s ¢ Q, we
conclude that f € Q. O

Corollary 6.5. Let D be a domain, M a finitely generated mazximal ideal of height 1, and E a subset of D.
Let R € D¥ be a divisible ring of functions from E to D, such that each f € R takes its values in only
finitely many residue classes of M in D.

Then the prime ideals of R lying over M are precisely the ideals of the form My for an ultrafilter U
on E. Each My is a mazimal ideal and its residue field isomorphic to D /M.

Proof. This follows from Theorem 6.4 via Theorem 5.3. O

To summarize, we can, using ultrafilters, describe certain prime ideals of a ring of functions R = R(E, D)
lying over a maximal ideal M pretty well: namely, those prime ideals that do not contain M-unit-valued
functions (Theorem 3.7), or that contain R(E, M) (Theorem 5.3).

We have, so far, little information about when all prime ideals of R lying over M are of this form, apart

from the sufficient condition in Theorem 6.4.
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If we restrict our attention to rings of functions R with D[z] C R(E, D) C DE | it would be interesting
to find a precise criterion, perhaps involving topological density, for this property.

Note that in the “nicest” case, that of Int(D), where D is a Dedekind ring with finite residue fields, not
only is Int(D, M) contained in every prime ideal of Int(D) lying over a maximal ideal M of D, but also
Int(D) is dense in DP with product topology of discrete topology on D [2,3].
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