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Abstract. LetD be a Dedekind domain with infinitely many maximal ideals, all of finite index,
and K its quotient field. Let Int(D) = {f ∈ K[x] | f(D) ⊆ D} be the ring of integer-valued
polynomials on D.

Given any finite multiset {k1, . . . , kn} of integers greater than 1, we construct a polynomial
in Int(D) which has exactly n essentially different factorizations into irreducibles in Int(D),
the lengths of these factorizations being k1, . . . , kn. We also show that there is no transfer
homomorphism from the multiplicative monoid of Int(D) to a block monoid.

1. Introduction

By factorization we mean an expression of an element of a ring as a product of irreducible
elements. Until not so long ago, the fact that such a factorization, if it exists, need not be
unique, was seen as a pathology. When mathematicians were shocked to find that uniqueness of
factorization does not hold in rings of integers in number fields, they did not immediately study
the details of this non-uniqueness, but moved on to unique factorization of ideals into prime ideals.
Non-uniqueness of factorization was avoided, whenever possible.

Only in the last few decades, some mathematicians, notably Geroldinger and Halter-Koch [9],
came around to the view that the precise details of non-uniqueness of factorization actually are a
fascinating topic: the underlying phenomena give a lot of information about the arithmetic of a
ring.

One important object of study is the set of lengths of factorizations of a fixed element, cf. [8].
The length of a factorization is the number of irreducible factors, and the set of lengths of an
element is the set of all natural numbers that occur as lengths of factorizations of the element.
Geroldinger and Halter-Koch [9] found that the sets of lengths of algebraic integers exhibit a
certain structure.

In stark contrast to this, we show in Section 4 that every finite set of natural numbers not
containing 1 occurs as the set of lengths of a polynomial in the ring of integer-valued polynomials
on D,

Int(D) = {f ∈ K[x] | f(D) ⊆ D},
where D is a Dedekind domain with infinitely many maximal ideals, all of them of finite index,
and K denotes the quotient field of D. The special case of D = Z has been shown by Frisch [6].

The study of non-uniqueness of factorization has mostly concentrated on Krull monoids so far.
Krull monoids are characterized by having a “divisor theory”. The multiplicative monoid D \ {0}
of an integral domain D is Krull exactly if D is a Krull ring, cf. [9].

The rings Int(D) for which we study non-uniqueness of factorization are not Krull, but Prüfer,
cf. [4, 14]. All factorizations of a single polynomial in Int(D), however, take place in a Krull
monoid, namely, in the divisor-closed submonoid of Int(D) generated by f .
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Following Reinhart [16], we call this monoid, consisting of all divisors in Int(D) of all powers of
f , the monadic submonoid generated by f . That all monadic submonoids of Int(D) are Krull was
shown by Reinhart [16] in the case where D is a unique factorization domain, and, by a different
method, by Frisch [7] in the case where D is a Krull ring. Thus, our Theorem 1, concerning non-
unique factorization in the Prüfer ring Int(D), also serves to show that quite wild factorization
behavior is possible in Krull monoids.

Among Krull monoids, the best studied ones are multiplicative monoids of rings of algebraic
integers. We should keep in mind, however, that the multiplicative monoids of rings of algebraic
integers are very special, in that unique factorization of ideals always lurks in the background. In
technical terms this means that there is a transfer homomorphism to a block monoid.

In Section 5, we show that there is no transfer homomorphism to a block monoid from the
multiplicative monoid of Int(D). This is relevant for two reasons: Firstly, because the rings of
whose multiplicative monoid it is known that it does not admit such a transfer homomorphism are
few and far between, see [5, 10, 11]; and secondly, because most, if not all, results so far concerning
arbitrary finite sets occurring as sets of lengths have been obtained using transfer homomorphisms
to block monoids [13].

Our main results are in Sections 4 and 5; in Section 2 we introduce the necessary notation and
Section 3 contains some useful lemmas.

2. Preliminaries

We start with a short review of some elementary facts on factorizations, Dedekind domains and
integer-valued polynomials, and introduce some notation.

Factorizations. We define here only the notions that we need throughout this paper, and refer
to the monograph by Geroldinger and Halter-Koch [9] for a systematic introduction to non-unique
factorizations.

Let R be a commutative ring with identity and r, s ∈ R.
(i) If r is a non-zero non-unit, we say r is irreducible in R if it cannot be written as the

product of two non-units of R.
(ii) A factorization of r in R is an expression

r = a1 · · · an (1)

where n ≥ 1 and ai is irreducible in R for 1 ≤ i ≤ n.
(iii) The number n of irreducible factors is called the length of the factorization in (1).
(iv) The set of lengths of r is the set of all natural numbers n such that r has a factorization

of length n.
(v) We say r and s are associated in R if there exists a unit u ∈ R such that r = us. We

denote this by r ∼ s.
(vi) Two factorizations of the same element,

r = a1 · · · an = b1 · · · bm, (2)

are called essentially the same if n = m and, after reindexing, aj ∼ bj for 1 ≤ j ≤ m. If
this is not the case, the factorizations in (2) are called essentially different.

Dedekind domains. Recall that an integral domain D is a Dedekind domain if and only if
every non-zero ideal is a product of prime ideals. This is equivalent to every non-zero ideal being
invertible. It is also equivalent to D being a Noetherian domain such that the localization at
every non-zero maximal ideal is a discrete valuation domain. And it is further equivalent to the
following list of properties:

(i) D is Noetherian
(ii) D is integrally closed
(iii) dim(D) ≤ 1
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From now on, we only consider Dedekind domains that are not fields. For a Dedekind domain
D with quotient field K, let max-spec(D) denote the set of maximal ideals of D. Every prime
ideal P ∈ max-spec(D) defines a discrete valuation vP by vP (a) = max{n ∈ Z | a ∈ Pn} for
a ∈ K \ {0}. vP is called the P -adic valuation on K.

For a non-zero ideal I of D, let vP (I) = min{vP (a) | a ∈ I}. This is compatible with the
definition of vP (a) for a ∈ K \ {0}, in the sense that vP (aD) = vP (a). With this notation, the
factorization of I into prime ideals is

I =
∏

P∈max-spec(D)

P vP (I) (3)

Note that vP (I) > 0 is equivalent to I ⊆ P . There are only finitely many prime overideals of I
in D and hence the product in Equation (3) is finite.

For two ideals I and J of D, I ⊆ J is equivalent to vP (J) ≤ vP (I) for all P ∈ max-spec(D).
Note that I ⊆ J is equivalent to the fact that there exists an ideal L of D such that JL = I, in
which case we say that J divides I and write J | I. This last equivalence is often summarized as
“to contain is to divide.”

For a thorough introduction to Dedekind domains, we refer to Bourbaki [1, Ch. VII, § 2].

Dedekind domains with finite residue fields. Let D be a Dedekind domain. For a maximal
ideal P with finite residue field we write ‖P‖ for |D/P | and call this number the index of P . In
what follows we will only consider Dedekind rings with infinitely many maximal ideals, all of whose
residue fields are finite. We will frequently use the fact that there are only finitely many maximal
ideals of each individual finite index. This holds in every Noetherian domain, as Samuel [17] has
shown; see also Gilmer [12].

We include a short proof by F. Halter-Koch for the special case of Dedekind domains.

Proposition 2.1 (Samuel [17], Gilmer [12]). Let D be a Dedekind domain. Then for each given
q ∈ N, there are at most finitely many maximal ideals P of D with ‖P‖ = q.

Proof (Halter-Koch, personal communication). Suppose that for some q ≥ 2 there exist infinitely
many prime ideals of index q, and let 0 6= a ∈ D. Then there exist infinitely many prime ideals
P of D such that ‖P‖ = q and a /∈ P . For each such prime ideal P we obtain aq−1 ≡ 1 mod P ,
hence aq−1 − 1 ∈ P and thus aq−1 = 1. So, every non-zero element of D is a (q − 1)-st root of
unity. Impossible! �

Integer-valued polynomials. If D is a domain with quotient field K, the ring of integer-valued
polynomials on D is defined as

Int(D) = {f ∈ K[x] | f(D) ⊆ D}.
Every non-zero f ∈ K[x] can be written as a quotient f = g

b where g ∈ D[x] and b ∈ D \ {0}.
Clearly, f = g

b is an element of Int(D) if and only if b | g(a) for all a ∈ D.

Definition 2.2. Let D be a domain and g ∈ Int(D). The fixed divisor of g is the ideal d(g) of D
generated by the elements g(a) with a ∈ D:

d(g) = (g(a) | a ∈ D)

We say that g is image primitive if d(g) = D. By abuse of notation, this is also denoted d(g) = 1.

Remark 2.3. Let D be a domain and K its quotient field.
(i) If g ∈ D[x] and b ∈ D \ {0}, then g

b is an element of Int(D) if and only if d(g) ⊆ bD.
(ii) If g ∈ D[x] and P a prime ideal ofD such that d(g) ⊆ P then g ∈ P [x] or [D : P ] ≤ deg(g).
(iii) If f , g ∈ Int(D), then d(fg) ⊆ d(f)d(g).
(iv) If g ∈ D[x] is irreducible in K[x], then every factorization of g in Int(D) as a product of

two (not necessarily irreducible) elements is of the form c gc with c ∈ D and d(g) ⊆ cD.
(v) If g ∈ D[x] is irreducible in K[x] and d(g) = D, then g is irreducible in Int(D).

For a general introduction to integer-valued polynomials we refer to the monograph by Cahen
and Chabert [2] and to their more recent survey paper [3].
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3. Auxiliary results

In this section we develop tools to construct, first, split polynomials in D[x] with prescribed
fixed divisor (Lemma 3.2), then, irreducible polynomials in D[x] with prescribed fixed divisor
(Lemma 3.3), and, finally, polynomials of a special form whose essentially different factorizations
in Int(D) we have complete control over (Lemma 3.7).

Remark 3.1. In the following, we want to consider the multiplicity of roots of polynomials.
For this purpose, we introduce some notation for multisets. Let mS(a) denote the multiplicity
of an element a in a multiset S (with mS(a) = 0 if a /∈ S). For multisets S and T , let S ] T
denote the collection of elements a in the union of the sets underlying S and T with multiplicities
mS]T (a) = mS(a) +mT (a) (the disjoint union of S and T ). Note that |S ] T | = |S|+ |T |.

Lemma 3.2. Let D be a domain, T ⊆ D a finite multiset and f =
∏
r∈T (x − r). If Q is a

non-zero prime ideal of D, then d(f) ⊆ Q if and only if T contains a complete system of residues
modulo Q.

Furthermore, if D is a Dedekind domain and T = T0 ]
⊎e
i=1 Ti such that:

(i) For all 1 ≤ i ≤ e, Ti is a complete system of residues modulo Q and the respective
representatives of the same residue class in each Ti are congruent modulo Q2,

(ii) There exists z ∈ D such that for all s ∈ T0, s 6≡ z mod Q,
then vQ(d(f)) = e.

Proof. If T does not contain a complete system of residues modulo Q, then there exists an element
a ∈ D such that a 6≡ r mod Q for all r ∈ T . This implies f(a) =

∏
r∈T (a − r) 6∈ Q, hence

d(f) * Q.
Conversely, if T contains a complete system of residues modulo Q then, for all a ∈ D, there

exists r ∈ T such that a ≡ r mod Q. This implies f(a) =
∏
r∈T (a − r) ∈ Q for all a ∈ D and

hence d(f) ⊆ Q.
Now assume that D is a Dedekind domain and T =

⊎e
i=1 Ti ] S such that (i) and (ii) hold. If

fi =
∏
r∈Ti(x−r) for 1 ≤ i ≤ e and g =

∏
s∈T0(x−s), then f = (

∏e
i=1 fi)g. Since Ti is a complete

system of residues modulo Q, it follows that vQ(fi(a)) ≥ 1 for all a ∈ D. Therefore, for all a ∈ D,

vQ(f(a)) =

e∑
i=1

vQ(fi(a)) + vQ(g(a)) ≥ e (4)

For 1 ≤ i ≤ e, let ai ∈ Ti with ai ≡ z mod Q. Since the elements ai are in the same residue
class modulo Q2, there exists d ∈ D in the same residue class modulo Q as z and all the ai, but
in a different residue class modulo Q2 from all the ai.

For such a d, then vQ(fi(d)) = 1 for all 1 ≤ i ≤ e and vQ(g(d)) = 0, since for all s ∈ T0,
s 6≡ z ≡ d mod Q. Therefore

vQ(f(d)) =

e∑
i=1

vQ(fi(d)) + vQ(g(d)) = e

which implies that vQ(d(f)) = e. �

Next, we need to discuss how to replace split monic polynomials in D[x] by monic polynomials
in D[x] which are irreducible in K[x], without changing the fixed divisors.

Lemma 3.3. Let D be a Dedekind domain with infinitely many maximal ideals and K its quotient
field. Let I 6= ∅ be a finite set and fi ∈ D[x] be monic polynomials for i ∈ I.

Then, there exist monic polynomials Fi ∈ D[x] for i ∈ I, such that
(i) deg(Fi) = deg(fi) for all i ∈ I,
(ii) the polynomials Fi are irreducible in K[x] and pairwise non-associated in K[x] and
(iii) for all subsets J ⊆ I and all partitions J = J1 ] J2,

d

∏
j∈J1

fj
∏
j∈J2

Fj

 = d

∏
j∈J

fj

 .
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Proof. Let P1, . . . , Pn be all maximal ideals P of D with ‖P‖ ≤ deg
(∏

i∈I fi
)
. Suppose the prime

factorization of the fixed divisor of the product of the fi is

d

(∏
i∈I

fi

)
=

n∏
j=1

P
ej
j .

Let Q ∈ max-spec(D) \ {P1, . . . , Pn}. Using the Chinese Remainder Theorem, we add elements
to the coefficients of the fi such that the resulting polynomials can be seen to be irreducible
according to Eisenstein’s irreducibility criterion with respect to Q, while retaining all relevant
properties with respect to sufficiently high powers of the Pi.

Let fik denote the coefficient of xk in fi. For i ∈ I and 0 ≤ k < deg(fi), let gik ∈ D such that

(i) gik ∈
∏n
j=1 P

ej+1
j for all 0 ≤ k < deg(fi).

(ii) gik ≡ −fik mod Q for all 0 ≤ k < deg(fi) and
(iii) gi0 6≡ −fi0 mod Q2.

Since the gik satisfying the above conditions are only determined modulo Q2
∏n
i=1 P

ei+1
i , there

are infinitely many choices for each gik. We use this flexibility to implement that gi0+fi0 6= gj0+fj0
for i 6= j. Then, for i ∈ I, we set

Fi = fi +

deg(fi)−1∑
k=0

gikx
k.

As the resulting Fi are monic and distinct, they are pairwise non-associated in K[x].
According to Eisenstein’s irreducibility criterion, the polynomials Fi are irreducible in D[x] for

i ∈ I, cf. [15, §29, Lemma 1]. Since the Fi are monic and D is integrally closed, it follows that the
Fi are irreducible in K[x] for all i ∈ I, cf. [1, Ch. 5, §1.3, Prop. 11].

By construction,

Fi ≡ fi mod

 n∏
j=1

P
ej+1
j

D[x]

for all i ∈ I. Now, if g(x) is the product of any selection of the polynomials fi, and G(x) the
modified product in which some of the fi have been replaced by Fi, then g(x) is congruent to G(x)

modulo
(∏n

j=1 P
ej+1
j

)
D[x].

Hence, for all a ∈ D, g(a) ≡ G(a) modulo
(∏n

j=1 P
ej+1
j

)
and, therefore,

min
a∈D

vP (G(a)) = min
a∈D

vP (g(a))

for all P that could conceivably divide the fixed divisor of G(x) or g(x) by Remark 2.3.(ii). This
implies the last assertion of the Lemma, to the effect that substituting Fi for some or all of the fi
does not change the fixed divisor of a product. �

Finally, the last two lemmas enable us to understand all essentially different factorizations of a
certain type of polynomials in Int(D).

Lemma 3.4. Let D be a Dedekind domain with quotient field K and f ∈ Int(D) of the following
form:

f =

∏
i∈I fi

c
with d

(∏
i∈I

fi

)
= cD,

where c is a non-unit of D and for each i ∈ I, fi ∈ D[x] is irreducible in K[x].
Let P ⊆ max-spec(D) be the finite set of prime ideal divisors of cD. If f = g1 · · · gm is a

factorization of f into (not necessarily irreducible) non-units in Int(D) then each gj is of the form

gj = aj
∏
i∈Ij

fi,
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where ∅ 6= Ij ⊆ I and aj ∈ K, such that I1 ] . . . ] Im = I, a1 · · · am = c−1 and
(i) vP (aj) ≤ 0 for all P ∈ max-spec(D) and all 1 ≤ j ≤ m; and
(ii) vP (aj) = 0 for all P ∈ max-spec(D) \ P and all 1 ≤ j ≤ m.

Proof. Let f = g1 · · · gm be a factorization of f into (not necessarily irreducible) non-units in
Int(D). Since d(f) = 1, no gi is a constant, by Remark 2.3.(iv). Each factor gj is, therefore, of
the form

gj = aj
∏
i∈Ij

fi (5)

where Ij is a non-empty subset of I and aj ∈ K, such that I1 ] . . . ] Im = I and a1 · · · am = c−1.
Note that for all P ∈ max-spec(D)

m∑
j=1

vP (aj) = −vP (c). (6)

Suppose vP (at) > 0 for some maximal ideal P and some 1 ≤ t ≤ m. Then
∑
j 6=t vP (aj) < −vP (c).

Remark 2.3.(iii) and the fact that vP
(
d
(∏

i∈I fi
))

= vP (c) imply vP
(
d
(∏

j 6=t
∏
i∈Ij fi

))
≤

vP (c). But now

vP

d

∏
j 6=t

gj

 = vP

d

∏
j 6=t

∏
i∈Ij

fi

+
∑
j 6=t

vP (aj) < 0,

which means that ∏
j 6=t

gj /∈ Int(D),

a contradiction. We have established that vP (aj) ≤ 0 for all P ∈ max-spec(D) and all 1 ≤ j ≤ m.
Now Equation (6) and the fact that vP (c) = 0 for all P /∈ P imply vP (aj) = 0 for all P /∈ P and
all 1 ≤ j ≤ m. �

Definition 3.5. Let D be a Dedekind domain, P ∈ max-spec(D) and fi ∈ D[x] for a finite set
I 6= ∅. We say fk is indispensable for P (among the polynomials fi with i ∈ I) if there exists an
element z ∈ D such that vP (fk(z)) > 0 and vP (fi(z)) = 0 for all i 6= k.

Remark 3.6. Note that fk indispensable for P (among the polynomials fi with i ∈ I) implies:
for every J ⊆ I

vP

(
d

(∏
i∈J

fi

))
> 0 =⇒ k ∈ J.

Lemma 3.7. Let D be a Dedekind domain with quotient field K and f ∈ Int(D) of the following
form:

f =

∏
i∈I fi

c
with d

(∏
i∈I

fi

)
= cD,

where c is a non-unit of D and for each i ∈ I, fi ∈ D[x] is irreducible in K[x]. Let P ⊆
max-spec(D) be the finite set of prime ideal divisors of cD.

Suppose, for each P ∈ P, ΛP is a subset of I such that fi is indispensable for P for each i ∈ ΛP .
Let Λ =

⋃
P∈P ΛP .

If
⋂
P∈P ΛP 6= ∅ then all essentially different factorizations of f into irreducibles in Int(D) are

given by: (∏
i∈Λ∪J1 fi

)
c

·
∏
j∈J2

fj

(each fj with j ∈ J2 counted as an individual factor), where I = Λ ] J1 ] J2 such that J1 is
minimal with d

(∏
i∈Λ∪J1 fi

)
= cD.
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Proof. Let f = g1 · · · gm be a factorization of f into (not necessarily irreducible) non-units in
Int(D). As in Lemma 3.4,

gj = aj
∏
i∈Ij

fi (7)

where Ij is a non-empty subset of I and aj ∈ K, such that I1 ] . . . ] Im = I and a1 · · · am = c−1.
Furthermore, vP (aj) ≤ 0 for all P ∈ max-spec(D) and all 1 ≤ j ≤ m and vP (aj) = 0 for all P /∈ P
and all 1 ≤ j ≤ m.

We know there exists a polynomial fi0 that is indispensable for all P ∈ P. We may assume
that i0 ∈ I1. By the definition of indispensable polynomial, vP

(
d
(∏

i∈Ij fi

))
= 0, for 2 ≤ j ≤ m

and all P ∈ P. From this and the fact that gj = aj
∏
i∈Ij fi is in Int(D), we infer that vP (aj) = 0

for all 2 ≤ j ≤ m and all P ∈ P. We have shown that a2, . . . , am are units of D.
Now u = a2 · · · am is a unit of D such that a1u = c−1. Since g1 ∈ Int(D), we must have

vP

(
d

(∏
i∈I1

fi

))
= vP (c)

for all P ∈ P and, by Remark 3.6, Λ ⊆ I1.
So far we have shown that every factorization f = g1 · · · gm of f into (not necessarily irreducible)

non-units of Int(D) is – up to reordering of factors and multiplication of factors by units in D –
the same as one of the following:(∏

i∈Λ∪J1 fi
)

c
·

∏
j∈I2

fj

 · · ·
 ∏
j∈Im

fj

 , (8)

where I = I1 ] · · · ] Im and I1 = Λ ] J1.
It remains to characterize, among the factorizations of the above form, those in which all factors

are irreducible in Int(D).
Since d(f) = D, it is clear that d(gj) = D for all 1 ≤ j ≤ m, by Remark 2.3.(iii). By the same

token, d(fi) = D for all i ∈ Ij with j ≥ 2. Since the fi are irreducible in K[x], those of them
with fixed divisor D are irreducible in Int(D), by Remark 2.3.(v). The criterion for each factor
gj =

∏
i∈Ij fi with j ≥ 2 to be irreducible is, therefore, |Ij | = 1 for all j ≥ 2.

Now, concerning the irreducibility of g1, the same arguments that lead to Equation (8), applied
to g1 = c−1

(∏
i∈Λ∪J1 fi

)
instead of f , show that g1 is irreducible in Int(D) if and only if we cannot

split off any factors fi with i ∈ J1. This is equivalent to d
(∏

i∈Λ∪J fi
)
6= cD for every proper

subset J ( J1, in other words, to J1 being minimal such that d
(∏

i∈Λ∪J1 fi
)

= cD. In this case
we set J2 =

⋃m
j=2 Ij and the assertion follows. �

Remark 3.8. When |P| > 1, the hypothesis
⋂
P∈P ΛP 6= ∅ in Lemma 3.7 can be replaced by a

weaker condition:
Consider the prime ideals P ∈ P as vertices of an undirected graph G and let (P,Q) be an edge

of G if and only if there exists a polynomial ft which is indispensable for both P and Q. If G is
a connected graph, then the conclusion of Lemma 3.7 holds. The proof of Lemma 3.7 generalizes
readily.

4. Construction of polynomials with prescribed sets of lengths

We are now ready to prove the main result of this paper.

Theorem 1. Let D be a Dedekind domain with infinitely many maximal ideals, all of them of
finite index.

Let 1 ≤ m1 ≤ m2 ≤ · · · ≤ mn be natural numbers.
Then there exists a polynomial H ∈ Int(D) with exactly n essentially different factorizations

into irreducible polynomials in Int(D), the length of these factorizations being m1 +1, . . . , mn+1.
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Proof. If n = 1, then H(x) = xm1+1 ∈ Int(D) is a polynomial which has exactly one factorization,
and this factorization has length m1 + 1. From now on, assume n ≥ 2.

First, we construct H(x). Let N = (
∑n
i=1mi)

2 −
∑n
i=1m

2
i and P a prime ideal of D with

‖P‖ > N + 1. Let c ∈ D such that vP (c) = 1 and c is not contained in any maximal ideal of index
2.

Say the prime factorization of cD is cD = PQe11 · · ·Q
et
t . Let τ = (‖P‖−N) and σ the maximum

of the following numbers: τ , and ei‖Qi‖ for 1 ≤ i ≤ t.
We now choose two subsets of D: a set R of order N , and S = {s0, . . . , sσ−1}. Using the

Chinese Remainder Theorem, we arrange that R and S have the following properties:
(i) s0 ≡ 0 mod P , and {s0, . . . , sτ−1} ∪ R is a complete system of residues modulo P .
(ii) si ≡ 0 mod P for all i ≥ τ .
(iii) For each Qi, S contains ei disjoint complete systems of residues, in which the respective

representatives of the same residue class in different systems are congruent modulo Q2
i .

(iv) For each Qi, no more than ei elements of S are congruent to 1 modulo Qi.
(v) For all r ∈ R, r ≡ 0 mod

⋂t
i=1Qi.

(vi) R ∪ S does not contain a complete system of residues for any prime ideal Q of D other
than P and Q1, . . . , Qt.

We now assign indices to the elements of R as follows

R = {r(k,i,h,j) | 1 ≤ k, h ≤ n, k 6= h, 1 ≤ i ≤ mk, 1 ≤ j ≤ mh}.

This allows us to visualize the elements of R as entries in a square matrix B with m =
∑n
i=1mi

rows and columns, in which the positions in the blocks of a block-diagonal matrix with block sizes
m1, . . . ,mn are left empty, see Fig. 1.

The rows and columns of B are divided into n blocks each, such that the k-th block of rows
consists of mk rows, and similarly for columns. Now r(k,i,h,j) designates the entry in row (k, i),
that is, in the i-th row of the k-th block of rows, and in column (h, j), that is, in the j-th column
of the h-th block of columns. Since no element of R has row and column index in the same block,
the positions of a block-diagonal matrix with blocks of sizes m1, . . . ,mn are left empty.

For 1 ≤ k ≤ n, let Ik = {(k, i) | 1 ≤ i ≤ mk} and set

I =

n⋃
k=1

Ik.

Then
I = {(k, i) | 1 ≤ k ≤ n, 1 ≤ i ≤ mk}

is the set of all possible row indices, or, equivalently, column indices.
For (k, i) ∈ Ik, let B[k, i] be the set of all elements r ∈ R which are either in row or in column

(k, i) of B, that is,

B[k, i] = {r(k,i,h,j) | (h, j) ∈ I \ Ik} ∪ {r(h,j,k,i) | (h, j) ∈ I \ Ik} (9)

In order to construct H ∈ Int(D), we set s(x) =
∏σ−1
i=0 (x− si) and, for (k, i) ∈ I,

f
(k)
i (x) =

∏
r∈B[k,i]

(x− r).

Then, let S(x) ∈ D[x], and, for each (k, i) ∈ I, F (k)
i (x) ∈ D[x] be monic polynomials such

as we know to exist by Lemma 3.3: irreducible in K[x], pairwise non-associated in K[x], with
deg(S) = deg(s) and deg(F

(k)
i ) = deg(f

(k)
i ), and such that, for every selection of polynomials

from among s and f (k)
i for (k, i) ∈ I, the product of the polynomials has the same fixed divisor as

the modified product in which s has been replaced by S and each f (k)
i by F (k)

i . Now, let

G(x) = S(x)
∏

(k,i)∈I

F
(k)
i (x) and H(x) =

G(x)

c
.
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1

n

k

h

m1

mh

mk

mn

B[h, j]

B[k, i]r(h, j, k, i)

r(k, i, h, j)

Figure 1. Say the k-th region of B consists of the positions with either column
index or row index in the k-th block. Then the union of the entries in any n− 1
different regions covers R. A union of different B[u, v], from which B[k, i] and
B[h, j] for two different blocks k 6= h are missing, however, does not cover R,
because r(k,i,h,j) and r(h,j,k,i) are not included.

Second, we show that d(G(x)) = cD, which implies H(x) ∈ Int(D) and d(H(x)) = 1. Note that

d(G(x)) = d

S(x)
∏

(k,i)∈I

F
(k)
i (x)

 = d

s(x)
∏

(k,i)∈I

f
(k)
i

 = d

(
σ−1∏
i=0

(x− si)
∏
r∈R

(x− r)2

)
.

(10)
By construction, the multiset R ] R ] S contains a complete system of residues modulo P ,

and the residue class modulo P of s1 ∈ S occurs only once among the elements of R ] R ] S.
Equation (10) and Lemma 3.2, applied to Q = P and T = R]R]S, e = 1, and z = s1, together
imply that

vP

d

S(x)
∏

(k,i)∈I

F
(k)
i (x)

 = 1

One can argue similarly for Qi, 1 ≤ i ≤ t: The multiset R ]R ] S contains ei disjoint complete
systems of residues modulo Qi in which the respective representatives of the same residue class in
different systems are congruent modulo Q2

i . No more than ei elements of R]R]S are congruent
1 modulo Qi, and these ei elements are all in the same residue class modulo Q2

i . By Lemma 3.2,
applied to Q = Qi, T = R]R ] S, e = ei and z = 1, and Equation (10), it follows that

vQi

d

S(x)
∏

(k,i)∈I

F
(k)
i (x)

 = ei (11)
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for 1 ≤ i ≤ t. Since R]R] S does not contain a complete system of residues modulo any prime
ideal other than P , Q1, . . . , Qt, we conclude (by Lemma 3.2) that

d(G(x)) = d

S(x)
∏

(k,i)∈I

F
(k)
i (x)

 = PQe11 · · ·Q
et
t = cD.

This shows H(x) ∈ Int(D) and d(H(x)) = 1.
Third, we prove that the essentially different factorizations of H(x) into irreducibles in Int(D)

are given by:

H(x) = F
(h)
1 (x) · · ·F (h)

mh
(x) ·

S(x)
∏

(k,i)∈I\Ih F
(k)
i (x)

c
(12)

where 1 ≤ h ≤ n.
It follows from the properties of R and S that the polynomial S(x) is indispensable for the

prime ideals P and Q1, . . . , Qt (among the polynomials S(x) and F (k)
i for (k, i) ∈ I).

Thus, by Lemma 3.7, the essentially different factorizations of H(x) into irreducibles in Int(D)
are given by:

H(x) =
S(x)

∏
(k,i)∈J F

(k)
i (x)

c

∏
(h,j)∈I\J

F
(h)
j (x) (13)

where J ⊆ I is minimal such that d
(
S(x)

∏
(k,i)∈J F

(k)
i (x)

)
= cD.

Since vQi
(d(S(x))) = ei by Lemma 3.2, the possible choices for J ⊆ I only depend on the prime

ideal P . For a subset J ⊆ I, let BJ =
⊎

(k,i)∈J B[k, i]. Then

d

S(x)
∏

(k,i)∈J

F
(k)
i (x)

 = d

(∏
r∈S

(x− r)
∏
r∈BJ

(x− r)

)
(14)

and it follows from Lemma 3.2 that the fixed divisor in Equation (14) is equal cD if and only if
S ]BJ contains a complete set of residues modulo P which is in turn equivalent to R ⊆ BJ . This
is the case if and only if there exists 1 ≤ h ≤ n with I \ Ih ⊆ J .

Therefore, J ⊆ I is minimal with d
(
S(x)

∏
(k,i)∈J F

(k)
i (x)

)
= cD if and only if J = I \ Ih for

some 1 ≤ h ≤ n. Hence, the essentially different factorizations of H(x), given by Equation (13),
are precisely the n essentially different factorizations stated in Equation (12), which are of lengths
m1 + 1, . . . , mn + 1. �

Corollary 4.1. Let D be a Dedekind domain with infinitely many maximal ideals, all of them of
finite index.

Then every finite subset of N \ {1} is the set of lengths of a polynomial in Int(D).

Remark 4.2. Kainrath [13, Theorem 1] proved a similar result as Corollary 4.1 for Krull monoids
H with infinite class group in which every divisor class contains a prime divisor. In his proof, he
uses transfer mechanisms.

Corollary 5.1 in the following section will show that this technique is not applicable to the proof
of either Theorem 1 or Corollary 4.1.

5. Not a transfer Krull domain

In this section we show that if D is a Dedekind domain with infinitely many maximal ideals, all
of finite index, then there does not exist a transfer homomorphism from the multiplicative monoid
Int(D) \ {0} to a block monoid. In the terminology introduced by Geroldinger [8], this means,
Int(D) is not a transfer Krull domain.

We refer to [9, Definitions 2.5.5 & 3.2.1] for the definition of a block monoid and a transfer
homomorphism, respectively. So far, there is only a small list of examples of naturally occurring
rings R for which it has been shown that there is no transfer homomorphism from R \ {0} to a
block monoid, see [5, 10, 11].
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In a block monoid, the lengths of factorizations of elements of the form c ·d with c, d irreducible,
c fixed, are bounded by a constant depending only on c, cf. [9, Lemma 6.4.4]. More generally,
every monoid admitting a transfer homomorphism to a block monoid has this property; see [9,
Proposition 3.2.3].

We now demonstrate for the irreducible element c = x in Int(D) that the lengths of factoriza-
tions of elements of the form c ·d with d irreducible in Int(D) are not bounded. We infer from this
that there does not exist a transfer homomorphism from the multiplicative monoid Int(D) \ {0}
to a block monoid.

Theorem 2. Let D be a Dedekind domain with infinitely many maximal ideals, all of them of
finite index.

Then for every n ≥ 1 there exist irreducible elements H,G1, . . . , Gn+1 in Int(D) such that

xH(x) = G1(x) · · ·Gn+1(x).

Proof. Let P1, . . . , Pn be distinct maximal ideals of D, none of them of index 2. By vi we denote
the discrete valuation associated to Pi. Let c ∈ D such that vi(c) = 1 for i = 1, . . . , n, and
c is not contained in any maximal ideal of D of index 2. Say the prime factorization of cD is
cD = P1 · . . . · Pn ·Qe11 · . . . ·Qemm , and define

N = max ({‖Pi‖ | 1 ≤ i ≤ n} ∪ {ei‖Qi‖ | 1 ≤ i ≤ m}) .
Let P = {Pi | 1 ≤ i ≤ n}, P1 = {Qi | 1 ≤ i ≤ m}, and

P2 = {Q ∈ max-spec(D) \ (P ∪ P1) | ‖Q‖ ≤ N + n}.
Let R be a subset of D of order N with the following properties (which can be realized by the

Chinese Remainder Theorem):
(i) R contains an element r0 ∈ (

⋂n
i=1 Pi) ∩

(⋂m
i=1Q

2
i

)
.

(ii) No element of R other than r0 is in any Pi ∈ P.
(iii) For each Pi ∈ P, R contains a complete system of residues modulo Pi.
(iv) For each Qi ∈ P1, R contains ei disjoint complete systems of residues, in which the

respective representatives of the same residue class in different systems are congruent
modulo Q2

i ;
(v) No more than ei elements of R are in Qi.
(vi) For all Q ∈ P2, all elements of R are contained in Q.

We set B = R \ {r0}.
Also, let a1, . . . , an ∈ D with the following properties (which, again, can be realized by the

Chinese Remainder Theorem):
(i) For all i = 1, . . . , n, ai ≡ 0 mod Pi.
(ii) For all i = 1, . . . , n, ai ≡ 1 mod Pj for all j 6= i.
(iii) For all Q ∈ P1, an ≡ 0 mod Q2 and ai ≡ 1 mod Q for all 1 ≤ i < n,
(iv) For all Q ∈ P2 and all 1 ≤ i ≤ n, ai ≡ 0 mod Q.

Let f(x) =
∏
b∈B(x − b) and let F (x) ∈ D[x] be monic and irreducible in K[x] such that for

every selection of polynomials from the set {x, f} ∪ {(x − ai) | 1 ≤ i ≤ n} the product of the
polynomials has the same fixed divisor as the modified product in which f has been replaced by
F , as in Lemma 3.3.

Lemmas 3.3 and 3.2, applied to T = B ∪ {a1, . . . , an} and each of the prime ideals in P ∪ P1,
imply that

d

(
F (x)

n∏
i=1

(x− ai)

)
= d

(
f(x)

n∏
i=1

(x− ai)

)
= cD.

Similarly, Lemmas 3.3 and 3.2, applied to T = B ∪ {0} and each of the prime ideals in P ∪ P1,
imply that

d (xF (x)) = d (xf(x)) = cD.

We set

H(x) =
F (x)

∏n
j=1(x− aj)
c

and G(x) =
xF (x)

c
.
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Then G(x) and H(x) are elements of Int(D) with d(G(x)) = d(H(x)) = 1 such that

xH(x) = G(x)(x− a1) · · · (x− an).

It remains to show thatH(x) andG(x) are irreducible in Int(D). Observe that x is indispensable
for all P ∈ P, and F (x) is indispensable for all P ∈ P and all Q ∈ P1 simultaneously (among the
polynomials F (x) and x). Hence G(x) is irreducible in Int(D) by Lemma 3.7.

Finally, again by Lemma 3.7, H(x) is irreducible in Int(D), since

(i) F (x) and x− ai are indispensable for Pi (1 ≤ i ≤ n)
(ii) F (x) is indispensable for Qi (1 ≤ i ≤ m)

among the polynomials F (x) and x− aj with 1 ≤ j ≤ n. �

As discussed at the beginning of this section, we may conclude:

Corollary 5.1. Let D be a Dedekind domain with infinitely many maximal ideals, all of them of
finite index.

Then there does not exist a transfer homomorphism from the multiplicative monoid Int(D)\{0}
to a block monoid; in other words: Int(D) is not a transfer Krull domain.
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